Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2010, Vol. 4 Issue (4) : 456-462    https://doi.org/10.1007/s11703-010-1033-7
RESEARCH ARTICLE
Construction of a plant expression vector of chalcone synthase gene of Ginkgo biloba L. and its genetic transformation into tobacco
Linling LI1,2, Hua CHENG2, Jianying PENG1(), Shuiyuan CHENG2()
1. College of Horticulture, Agricultural University of Hebei, Baoding 071001, China; 2. College of Life Science and Engineering, Huanggang Normal University, Huanggang 438000, China
 Download: PDF(183 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The chalcone synthase gene (chs) from Ginkgo biloba L. was cloned by PCR procedure. For constructing a plant expression vector of Gbchs, the gene was digested with XbaI and BamHI and inserted into the pBI121 vector. Gbchs was transferred into tobacco mediated by Agrobacterium tumefaciens LBA4404. PCR and Southern blot were performed, and the results showed that chs had been transformed into the genomic DNA of tobacco. The total flavones in the transformed tobacco leaves was extracted by the methanol extraction method and tested by UV spectrophotometry. The results showed that, compared to the control tobacco, the content in the transgenic tobaccos, n=6, was generally higher, and the difference reached a significant level (P<0.05) and highly significant level (P<0.01), except one sample. Moreover, the highest sample was nearly 7.7 times greater than that of the controls. All these results show that utilizing genetic manipulations to improve plants in order to regulate flavone content by gene engineering may be an effective and hopeful method.

Keywords chalcone synthase gene      Ginkgo biloba L.      plant expression vector      flavones     
Corresponding Author(s): PENG Jianying,Email:pengzhuwen@sina.com; CHENG Shuiyuan,Email:s_y_cheng@sina.com   
Issue Date: 05 December 2010
 Cite this article:   
Linling LI,Hua CHENG,Jianying PENG, et al. Construction of a plant expression vector of chalcone synthase gene of Ginkgo biloba L. and its genetic transformation into tobacco[J]. Front Agric Chin, 2010, 4(4): 456-462.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-010-1033-7
https://academic.hep.com.cn/fag/EN/Y2010/V4/I4/456
Fig.1  Colony PCR detection of pBI121-
Note: 1-5: PCR product of positive colonial; CK-: PCR product of wild colonial; M: DL2000 marker.
Fig.2  The restriction enzyme digestion analysis of pBI121-
Note: M: DL2000 marker; 1: the restriction enzyme digestion of recombinant vector; 2: .
Fig.3  Colony PCR detection of pBI121- in LBA4404
Note: + : PCR product of pBI121; -: PCR product of wild LBA4404 colonial; 1-4: PCR product of positive colonial; M: DL2000 marker.
Fig.4  Identification of transgenic tobaccos by PCR
Note: + : PCR product of pBI121-; -: PCR product of control tobacco; M: DL2000 marker; 1-8: PCR product of Kanamycin-resistant plants.
Fig.5  Southern blot analysis on putative primary transformants of tobaccos
Note: CK: control tobacco; 1-5: positive tobaccos by PCR analysis.
Fig.6  Transcript accumulation of the in transgenic or control tobaccos by RT-PCR (upper panel)
Note: The gene was used as the control to show the normalization of the amount of templates in PCR reactions (lower panel). CK: control tobacco; sample 1-6: transgenic tobaccos.
Fig.7  The content of flavone in the transgenic or control tobacco leaf in net weight/%
Note: CK: control tobacco; sample 1-6: transgenic tobaccos. The difference reached significant level (<0.05) marked with *, very significant level (<0.01) marked with **.
1 Compton M E (1994). Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tissue Organ Cult , 37(3): 217–242
2 Davies K M, Bloor S J, Spiller G B, Deroles S C (1998). Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J , 13(2): 259–266
doi: 10.1046/j.1365-313X.1998.00029.x
3 Della Vedova C B, Lorbiecke R, Kirsch H, Schulte M B, Scheets K, Borchert L M, Scheffler B E, Wienand U, Cone K C, Birchler J A (2005). The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics , 170(4): 1989–2002
doi: 10.1534/genetics.105.043406
4 Dorer D R, Henikoff S (1997). Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics , 147(3): 1181–1190
5 Duncan D B (1955). Multiple range and multiple F tests. Biometrics , 11(1): 1–42
doi: 10.2307/3001478
6 Elomaa P, Helariutta Y, Kotilainen M, Teeri T (1996). Transformation of antisense constructs of the chalcone synthase gene superfamily into Gerbera hybrida: differential effect on the expression of family members. Mol Breed , 2(1): 41–50
doi: 10.1007/BF00171350
7 Elomaa P, Honkanen J, Puska R, Sepp?nen P, Helariutta Y, Mehto M, Kotilainen M, Nevalainen L, Teeri T H (1993). Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Nat Biotechnol , 11(4): 508–511
doi: 10.1038/nbt0493-508
8 Estabrook E M, Sengupta-Gopalan C (1991). Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell , 3(3): 299–308
9 Farzad M, Soria-Hernanz D F, Altura M, Hamilton M B, Weiss M R, Elmendorf H G (2005). Molecular evolution of the chalcone synthase gene family and identification of the expressed copy in flower petal tissue of Viola cornuta. Plant Sci , 168(4): 1127–1134
doi: 10.1016/j.plantsci.2004.12.014
10 Fukusaki E, Kawasaki K, Kajiyama S, An C I, Suzuki K, Tanaka Y, Kobayashi A (2004). Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol , 111(3): 229–240
doi: 10.1016/j.jbiotec.2004.02.019
11 Gibb H, Morris C T, Gleisberg J (1997). A therapeutic programme for people with dementia. Int J Nurs Pract , 3(3): 191–199
doi: 10.1111/j.1440-172X.1997.tb00099.x
12 Hanumappa M, Choi G, Ryu S, Choi G (2007). Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J Exp Bot , 58(10): 2471–2478
doi: 10.1093/jxb/erm104
13 Harborne J, Turner B (1986). Plant Chemosystematics. London: Academic Press London
14 Heller W, Hahlbrock K (1980). Highly purified “flavanone synthase” from parsley catalyzes the formation of naringenin chalcone. Arch Biochem Biophys , 200(2): 617–619
15 Iwashita K, Kobori M, Yamaki K, Tsushida T (2000). Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem , 64(9): 1813–1820
doi: 10.1271/bbb.64.1813
16 Jiang L, Cai L (2000). A method for extracting DNA of Ginkgo biloba. Plant Physiology Communications , 36(4): 340–341
17 Koseki M, Goto K, Masuta C, Kanazawa A (2005). The star-type color pattern in Petunia hybrida ‘red Star’ flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol , 46(11): 1879–1883
doi: 10.1093/pcp/pci192
18 Lawrence N J, McGown A T, Ducki S, Hadfield J A (2000). The interaction of chalcones with tubulin. Anticancer Drug Des , 15(2): 135–141
19 Muir S R, Collins G J, Robinson S, Hughes S, Bovy A, Ric De Vos C H, van Tunen A J, Verhoeyen M E (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol , 19(5): 470–474
doi: 10.1038/88150
20 Nishihara M, Nakatsuka T, Yamamura S (2005). Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett , 579(27): 6074–6078
doi: 10.1016/j.febslet.2005.09.073
21 Pang Y Z, Shen G, Wu W, Liu X, Lin J, Tan F, Sun X, Tang K X (2005). Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci , 168(6): 1525–1531
doi: 10.1016/j.plantsci.2005.02.003
22 Pietta P G, Gardana C, Mauri P L (1997). Identification of Ginkgo biloba flavonol metabolites after oral administration to humans. Journal of Chromatography B: Biomedical Sciences and Applications , 693(1): 249–255
doi: 10.1016/S0378-4347(96)00513-0
23 Samoszuk M, Tan J, Chorn G (2005). The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts. BMC Complement Altern Med , 5(1): 5–10
doi: 10.1186/1472-6882-5-5
24 Saslowsky D E, Dana C D, Winkel-Shirley B (2000). An allelic series for the chalcone synthase locus in Arabidopsis. Gene , 255(2): 127–138
25 Schijlen E G, de Vos C H, Martens S, Jonker H H, Rosin F M, Molthoff J W, Tikunov Y M, Angenent G C, van Tunen A J, Bovy A G (2007). RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol , 144(3): 1520–1530
doi: 10.1104/pp.107.100305
26 Schmelzer E, Jahnen W, Hahlbrock K (1988). In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci USA , 85(9): 2989–2993
doi: 10.1073/pnas.85.9.2989
27 Tanaka Y, Tsuda S, Kusumi T (1998). Metabolic engineering to modify flower color. Plant Cell Physiol , 39(11): 1119–1126
28 Taylor L P, Jorgensen R (1992). Conditional male fertility in chalcone synthase-deficient petunia. J Hered , 83(1): 11–17
29 van der Krol A R, Lenting P E, Veenstra J, van der Meer I M, Koes R E, Gerats A G M, Mol J N M, Stuitje A R (1988). An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature , 333(6176): 866–869
doi: 10.1038/333866a0
30 van der Leede-Plegt L M, Ven B C E K, Franken J M, van Tuyl J M, van Tunen A J, Dons H J M (1997). Transgenic lilies via pollen-mediated transformation. Acta Hortic , 430: 529–530
31 Xu F, Cai R, Cheng S Y, Du H, Wang Y, Cheng S H (2008). Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol , 7(6): 721– 729
32 Xu F, Cheng S Y, Cheng S H, Wang Y, Du H W (2007). Time course of expression of chalcone synthase gene in Ginkgo biloba. Journal of Plant Physiology and Molecular Biology , 33(4): 309–317
33 Zuker A, Tzfira T, Vainstein A (1998). Genetic engineering for cut-flower improvement. Biotechnol Adv , 16(1): 33–79
doi: 10.1016/S0734-9750(97)00063-3
[1] Chunli SONG, Pingping ZHOU, Junlian MA, Xia TANG, Zide ZHANG, Zhixia HOU. Cloning of strawberry FaEtr2 gene and its plant expression vector construction for antisense RNA[J]. Front Agric Chin, 2009, 3(1): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed