Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 300-309    https://doi.org/10.1007/s11458-011-0252-7
RESEARCH ARTICLE
A study of chemical reactions in coarse-grained simulations
Hong LIU, Zhongyuan LU()
State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
 Download: PDF(508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We introduce a reaction model for use in coarse-grained simulations to study the chemical reactions in polymer systems at mesoscopic level. In this model, we employ an idea of reaction probability in control of the whole process of chemical reactions. This model has been successfully applied to the studies of surface initiated polymerization process and the network structure formation of typical epoxy resin systems. It can be further modified to study different kinds of chemical reactions at mesoscopic scale.

Keywords coarse-grained simulation      reaction probability      surface initiated polymerization      curing reaction     
Corresponding Author(s): LU Zhongyuan,Email:luzhy@jlu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Hong LIU,Zhongyuan LU. A study of chemical reactions in coarse-grained simulations[J]. Front Chem Chin, 2011, 6(4): 300-309.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0252-7
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/300
Fig.1  Illustration of the reaction process controlled by the reaction probability and reaction radius. When the active end (the cyan ball) of the chain (the gray balls) meets several free monomers in its reaction radius (the semitransparent sphere), it randomly chooses one of the monomers as a reacting object (the red ball). Whether the bond between the active end and the free monomer can be generated is decided by the preset reaction probability.
Fig.2  Snapshots of the surface-initiated polymerization with initiator density σ = 0.226: (a) in the early stage of the polymerization; (b) after a period of the SIP process. The densely packed red balls represent the unmovable wall particles; the regularly distributed pink balls represent the initiators; the cyan balls represent the grafted monomers; and the blue balls represent the active ends of the chains. The free monomers are omitted here for clarity.
Fig.3  The grafted monomer fraction as a function of the initiator density at different polymerization rates in the SIP reactions
Fig.4  Time evolution of the fraction of unsaturated initiators: (a) the log-log and (b) the semi-log plots in the early stage. The square symbol data sets denote the results of the systems with different at the initiator density , and the triangular symbol data sets denote the results with different at .
Fig.5  The PDI of the grafted polymer chains as a function of the initiator density at different polymerization rates in SIP reactions
Fig.6  The schematic illustration of the coarse-graining scheme for the three components. The DDS molecule is coarse-grained into red A bead; the RA molecule is coarse-grained into two yellow B beads; and the SA molecule is coarse-grained into an = 10 cyan chain.
αijDDSRASA
DDS25.0030.4733.99
RA25.0025.43
SA25.00
Tab.1  The DPD interaction parameters between different components in the typical epoxy resin system
Fig.7  Crosslinking network structure of the epoxy resin system. The yellow stick represents the bond between DGEBA particle and other components. The red stick represents the bond between the curing agent DDS and other components. While the cyan stick represents the bond between the sizing agent particle and other components.
Fig.8  Time evolution of the conversion during the curing reaction
Fig.9  Gradient distribution of the normalized crosslink density and the left epoxy groups along the axis after the accomplishment of the curing reactions
1 Glotzer, S. C.; Stauffer, D.; Jan, N., Phys. Rev. Lett . 1994, 72, 4109-4112
doi: 10.1103/PhysRevLett.72.4109 pmid:10056384
2 Glotzer, S.; Di Marzio, E.; Muthukumar, M., Phys. Rev. Lett . 1995, 74, 2034-2037
doi: 10.1103/PhysRevLett.74.2034 pmid:10057825
3 Kyu, T.; Lee, J. H., Phys. Rev. Lett . 1996, 76, 3746-3749
doi: 10.1103/PhysRevLett.76.3746 pmid:10061099
4 Smith, G. W.Mol. Cryst. Liq. Cryst. Sci. Technol . Sect. A 1994, 241, 77-89
5 Lísal, M.; Brennan, J. K.; Smith, W. R., J. Chem. Phys . 2006, 125, 164905
doi: 10.1063/1.2359441 pmid:17092137
6 Lísal, M.; Brennan, J. K.; Smith, W. R., J. Chem. Phys . 2009, 130, 104902
doi: 10.1063/1.3079139 pmid:19292554
7 He, J. P.; Zhang, H. D.; Chen, J. M.; Yang, Y. L., Macromolecules 1997, 30, 8010-8018
doi: 10.1021/ma9614858
8 Farah, K.; Karimi-Varzaneh, H. A.; Müller-Plathe, F.; B?hm, M. C., J. Phys. Chem. B 2010, 114, 13656-13666
doi: 10.1021/jp107001e pmid:20939547
9 Perez, M.; Lame, O.; Leonforte, F.; Barrat, J. L., J. Chem. Phys . 2008, 128, 234904
doi: 10.1063/1.2936839 pmid:18570525
10 Genzer, J., Macromolecules 2006, 39, 7157-7169
doi: 10.1021/ma061155f
11 Turgman-Cohen, S.; Genzer, J., Macromolecules 2010, 43, 9567-9577
doi: 10.1021/ma102046q
12 Wang, L.; He, X. H.; Chen, Y., J. Chem. Phys. 2011, 134, 104901
doi: 10.1063/1.3560643 pmid:21405187
13 Berezkin, A. V.; Kudryavtsev, Y. V., Macromolecules 2011, 44, 112-121
doi: 10.1021/ma101285m
14 Lu, W. Q.; Ding, J. D., Macromolecules 2006, 39, 7433-7440
doi: 10.1021/ma061356j
15 Mukherji, D.; Abrams, C. F., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 79, 061802
doi: 10.1103/PhysRevE.79.061802 pmid:19658517
16 Akkermans, R. L. C.; Toxvaerd, S.; Briels, W. J., J. Chem. Phys. 1998, 109, 2929
doi: 10.1063/1.476845
17 Groot, R. D.; Warren, P. B., J. Chem. Phys. 1997, 107, 4423
doi: 10.1063/1.474784
18 Espa?ol, P.; Warren, P. B., Europhys. Lett. 1995., 30, 191-196
doi: 10.1209/0295-5075/30/4/001
19 Groot, R. D.; Madden, T. J., J. Chem. Phys. 1998, 108, 8713
doi: 10.1063/1.476300
20 Weeks, J. D.; Chandler, D.; Andersen, H. C., J. Chem. Phys. 1971, 54, 5237
doi: 10.1063/1.1674820
21 Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids ; Wiley: New York, 1977; Vols. 1 and 2.
22 Kremer, K.; Grest, G. S., J. Chem. Phys. 1990, 92, 5057
doi: 10.1063/1.458541
23 Nikunen, P.; Vattulainen, I.; Karttunen, M., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007, 75, 036713
doi: 10.1103/PhysRevE.75.036713 pmid:17500832
24 Liu, H.; Xue, Y. H.; Qian, H. J.; Lu, Z. Y.; Sun, C. C., J. Chem. Phys. 2008, 129, 024902
doi: 10.1063/1.2953694 pmid:18624558
25 Pastorino, C.; Binder, K.; Kreer, T.; Müller, M., J. Chem. Phys. 2006, 124, 064902
doi: 10.1063/1.2162883
26 Soddemann, T.; Dünweg, B.; Kremer, K., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 63, 046702
doi: 10.1103/PhysRevE.68.046702
27 Liu, H.; Qian, H. J.; Zhao, Y.; Lu, Z. Y., J. Chem. Phys. 2007, 127, 144903
doi: 10.1063/1.2790005 pmid:17935435
28 Liu, H.; Li, M.; Lu, Z. Y.; Zhang, Z. G.; Sun, C. C., Macromolecules 2009, 42, 2863-2872
doi: 10.1021/ma802817r
29 Pal, S.; Seidel, C., Macromol. Theory Simul. 2006., 15, 668-673
doi: 10.1002/mats.200600048
30 Chen, C. M.; Fwu, Y. A., Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 63, 011506
doi: 10.1103/PhysRevE.63.011506
31 Goujon, F.; Malfreyt, P.; Tildesley, D. J., ChemPhysChem 2004, 5, 457-464
doi: 10.1002/cphc.200300901 pmid:15139218
32 Malfreyt, P.; Tildesley, D. J., Langmuir 2000, 16, 4732-4740
doi: 10.1021/la991396z
33 Yamamoto, S.; Tsujii, Y.; Fukuda, T., Macromolecules 2000, 33, 5995-5998
doi: 10.1021/ma000225u
34 Yamamoto, S.; Ejaz, M.; Tsujii, T.; Fukuda, T., Macromolecules 2000, 33, 5608-5612
doi: 10.1021/ma991988o
35 Tsujii, Y.; Ohno, K.; Yamamoto, S.; Goto, A.; Fukuda, T., Adv. Polym. Sci. 2006., 197, 1-45
36 Girard-Reydet, E.; Riccardi, C. C.; Sautereau, H.; Pascault, J. P., Macromolecues 1995, 28, 7599-7607
doi: 10.1021/ma00127a003
37 Dai, Z. S.; Zhang, B. Y.; Shi, F. H.; Li, M.; Zhang, Z. G.; Gu, Y. Z., Appl. Surf. Sci. 2011, 257, 8457-8461
doi: 10.1016/j.apsusc.2011.04.129
38 Li, Z. W.; Lu, Z. Y.; Sun, Z. Y.; Li, Z. S.; An, L. J., J. Phys. Chem. B 2007, 111, 5934-5940
doi: 10.1021/jp0707539 pmid:17477563
39 Fermeglia, M.; Cosoli, P.; Ferrone, M.; Piccarolo, S.; Mensitieri, G.; Pricl, S., Polymer (Guildf.) 2006, 47, 5979-5989
doi: 10.1016/j.polymer.2006.05.070
40 Fan, Z. J.; Williams, M. C.; Choi, P., Polymer (Guildf.) 2002, 43, 1497-1502
doi: 10.1016/S0032-3861(01)00730-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed