Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (2) : 213-235    https://doi.org/10.1007/s11705-009-0227-0
Research articles
Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals
Yogesh P. PATIL,Pawan J. TAMBADE,Sachin R. JAGTAP,Bhalchandra M. BHANAGE,
Institute of Chemical Technology (Autonomous), N. Parekh Marg, Matunga, Mumbai- 400019, India;
 Download: PDF(404 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The syntheses of carbon dioxide (CO2) based industrially important chemicals have gained considerable interest in view of the sustainable chemistry and “green chemistry” concepts. In this review, recent developments in the chemical fixation of CO2 to valuable chemicals are discussed. The synthesis of five-member cyclic carbonates via, cycloaddition of CO2 to epoxides is one of the promising reactions replacing the existing poisonous phosgene-based synthetic route. This review focuses on the synthesis of cyclic carbonates, vinyl carbamates, and quinazoline-2,4(1H,3H)-diones via reaction of CO2 and epoxide, amines/phenyl acetylene, 2-aminobenzinitrile and other chemicals. Direct synthesis of dimethyl carbonate, 1,3-disubstituted urea and 2-oxazolidinones/2-imidazolidinones have limitations at present because of the reaction equilibrium and chemical inertness of CO2. The preferred alternatives for their synthesis like transesterification of ethylene carbonate with methanol, transamination of ethylene carbonate with primary amine and transamination reaction of ethylene carbonate with diamines/β-aminoalcohols are discussed. These methodologies offer marked improvements for greener chemical fixation of CO2 in to industrially important chemicals.
Issue Date: 05 June 2010
 Cite this article:   
Pawan J. TAMBADE,Yogesh P. PATIL,Sachin R. JAGTAP, et al. Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals[J]. Front. Chem. Sci. Eng., 2010, 4(2): 213-235.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0227-0
https://academic.hep.com.cn/fcse/EN/Y2010/V4/I2/213
Jessop P G, Ikariya T, and Noyori R. Homogeneous catalysis insupercritical fluids. Science, 1995, 269: 1065―1069

doi: 10.1126/science.269.5227.1065
Aresta M, Quaranta E. Carbondioxide: a substitute for phosgene. Chemtech, 1997, 32―40
Shaikh A A, Shivaram S. Organiccarbonates. Chem Rev, 1995, 96: 951―957

doi: 10.1021/cr950067i
Sakakura S, Choi J C, Yasuda H. Transformation of carbon dioxide. Chem Rev, 2007, 107: 2365―2387

doi: 10.1021/cr068357u
Pierre B, Dominque M, Dominique N. Reaction of carbon dioxidewith carbon carbon bond formation catalyzed by transition-metal complexes. Chem Rev, 1988, 88: 747―764

doi: 10.1021/cr00087a003
Aresta M. Recovery and Utilisation of Carbon Dioxide. EU-report, 2001
Shi F, Deng Y Q, Sima T L, Peng J J, Gu Y L, Qiao B T. Alternatives to phosgene and carbon monoxide: Synthesisof symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed, 2003, 42: 3257―3260

doi: 10.1002/anie.200351098
Kosugi Y, Rahim M A, Takahashi K, Imaoka Y, Kitayama M. Carboxylation of alkali metalphenoxide with carbon dioxide at terrestrial temperature. Appl Organomet Chem, 2000, 14: 841―843

doi: 10.1002/1099-0739(200012)14:12<841::AID-AOC74>3.0.CO;2-P
Lindsey A S, Jeskey H. TheKolbe-schmitt reaction. Chem Rev, 1957, 57: 583―620

doi: 10.1021/cr50016a001
Darensbourg D J, Yarbrough J C. Mechanistic aspects of the copolymerization reaction of carbon dioxideand epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc, 2002, 124: 6335―6342

doi: 10.1021/ja012714v
Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbondioxide and epoxide. J Polym Sci, PartB : Polym Lett, 1969, 7: 287―292

doi: 10.1002/pol.1969.110070408
Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbondioxide and epoxide with organometallic compounds. Makromol Chem, 1969, 130: 210―220

doi: 10.1002/macp.1969.021300112
Luinstra G A, Haas G R, Molnar F, Bernhart V, Eberhardt R, Rieger B. On the formation of aliphatic polycarbonates from epoxideswith chromium (III) and aluminum(III) metal-salen complexes. Chem Eur J, 2005, 11: 6298―6314

doi: 10.1002/chem.200500356
Chaturvedi D, Ray S. Versatile useof carbon dioxide in the synthesis of carbamates. Monatsh Chem, 2006, 137: 127―145

doi: 10.1007/s00706-005-0423-7
Rohr M, Geyer C, Wandeler R, Schneider M S, Murphy E F, Baiker A. Solvent-free ruthenium-catalysed vinylcarbamate synthesisfrom phenylacetylene and diethylamine in supercritical carbon dioxide. Green Chem, 2001, 3: 123―125

doi: 10.1039/b102341c
Shi M, Nicholas K M. Palladium-catalyzed carboxylation of allyl stannanes. J Am Chem Soc, 1997, 119: 5057―5058

doi: 10.1021/ja9639832
Shi D X, Feng Y Q, Zhong S H. Photocatalytic conversion of CH4 and CO2 to oxygenated compoundsover Cu/CdS–TiO2/SiO2 catalyst. Catal Today, 2004, 98: 505―509

doi: 10.1016/j.cattod.2004.09.004
Wilcox E M, G, Roberts W, Spivey J J. Direct catalytic formationof acetic acid from CO2 and methane. Catal Today, 2003, 88: 83―90

doi: 10.1016/j.cattod.2003.08.007
Sakakura T, Choi J, Saito C Y, Sako T. Synthesisof dimethyl carbonate from carbon dioxide: Catalysis and mechanism. Polyhedron, 2000, 19: 573―576

doi: 10.1016/S0277-5387(99)00411-8
Iwakabe K, Nakaiwa M, Sakakura T, Choi J C, Yasuda H, Takahashi T, Ooshima Y. Reaction rate of the production of dimethyl carbonatedirectly from the supercritical CO2 and methanol J Chem Eng Jpn, 2005, 38: 1020―1024

doi: 10.1252/jcej.38.1020
Aresta M, Dibenedetto A, Fracchiolla E, Giannoccaro P, Pastore C, Papai I, Schubert G. Mechanism of formation of organic carbonates from aliphaticalcohols and carbon dioxide under mild conditions promoted by carbodiimides.DFT calculation and experimental study. J Org Chem, 2005, 70: 6177―6186

doi: 10.1021/jo050392y
Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K. A novel method of direct synthesis of dimethyl carbonatefrom methanol and carbon dioxide catalyzed by zirconia. Catal Lett, 1999, 58: 225―229

doi: 10.1023/A:1019098405444
Tsuda T, Maruta K, Kitaike Y. Nickel(0)-catalyzed alternatingcopolymerization of carbon dioxide with diynes to poly(2-pyrones). J Am Chem Soc, 1992, 114: 1498―1499

doi: 10.1021/ja00030a065
Behr A, Heite M. Telomerizationof carbon dioxide and 1,3-butadiene: Process development in a miniplant. Chem Eng Technol, 2000, 23: 952―955

doi: 10.1002/1521-4125(200011)23:11<952::AID-CEAT952>3.0.CO;2-0
Schulz P S, Walter O, Dinjus E. Facile synthesis of a tricyclohexylphosphine-stabilized η3-allyl-carboxylato Ni(II) complex andits relevance in electrochemical butadiene carbon dioxide coupling. Appl Organomet Chem, 2005, 19: 1176―1179

doi: 10.1002/aoc.993
Takimoto M, Mori M. Novel catalyticCO2 incorporation reaction: Nickel-catalyzedregio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc, 2002, 124: 10008―10009

doi: 10.1021/ja026620c
McGhee W, Riley D, Christ K, Pan Y, Parnas B. Carbon dioxide as a phosgenereplacement: Synthesis and mechanistic studies of urethanes from amines,CO2 and alkyl chlorides. J Org Chem, 1995, 60: 2820―2830

doi: 10.1021/jo00114a035
Ochiai B, Inoue S, Endo T. One-pot non-isocyanate synthesis of polyurethanesfrom bisepoxide, carbon dioxide, and diamine. J Polym Sci, Part A: Polym Chem, 2005, 43: 6613―6618

doi: 10.1002/pola.21103
Ushikoshi K, Mori K, Watanabe T, Saito M. A50?kg/day class test plant for methanol synthesis from CO2 and H2 Study. Surf Sci Catal, 1998, 114: 357―364

doi: 10.1016/S0167-2991(98)80770-2
Bart J C J, Sneeden J J F. Copper-zinc oxide-alumina methanol catalysts revisited. Catal Today, 1987, 2: 1―124

doi: 10.1016/0920-5861(87)80001-9
Fujita S-I, Usui M, Ito H, Takezawa N, Mechanismsof methanol synthesis from carbon dioxide and from carbon monoxideat atmospheric pressure over Cu/ZnO. JCatal, 1995, 157: 403―413

doi: 10.1006/jcat.1995.1306
Inoue Y, Izumida H, Sasaki Y, Hashimoto H. Catalytic fixation of carbon dioxide to formic acid bytranstionn-metal complexes under mild conditions. Chem Lett, 1976, 863―864

doi: 10.1246/cl.1976.863
Darensbourg D J, Ovalles C, Pala M. Homogeneous catalysts forcarbon dioxide/hydrogen activation. Alkylformate production using anionic ruthenium carbonyl clusters as catalystsJ Am Chem Soc, 1983, 105: 5937―5939

doi: 10.1021/ja00356a049
Tsai J-C, Nicholas K M, Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid1. J Am Chem Soc. 1992, 114: 5117―5124

doi: 10.1021/ja00039a024
Gassner F, Leitner W. Hydrogenationof carbon dioxide to formic acid using water-soluble rhodium catalyststs. J Chem Soc, Chem Commun, 1993, 1465―1467

doi: 10.1039/c39930001465
Jessop P J, Ikariya T, Noyori R. Homogeneous hydrogenationof carbon dioxide. Chem Rev, 1995, 95: 259―272

doi: 10.1021/cr00034a001
Jessop P J, Hisiao Y, Ikariya T, Noyori R. J Am Chem Soc, 1996, 118: 344―355

doi: 10.1021/ja953097b
Tominaga K, Sasaki Y, Kawai M, Watanabe T, Saito M. Ruthenium complexcatalysed hydrogenation of carbon dioxide to carbon monoxide, methanoland methane. J Chem Soc, Chem Commun, 1993, 629―630

doi: 10.1039/c39930000629
Xiaoding X, Moulijin J A. Mitigation of CO2 by chemical conversion:Plausible chemical reactions and promising products. Energy Fuels, 1996, 10: 305―325

doi: 10.1021/ef9501511
Gibson D H. Carbon dioxide coordination chemistry: Metal complexesand surface-bound species. What relationships? Coord Chem Rev, 1999, 185―186: 335―355

doi: 10.1016/S0010-8545(99)00021-1
Shi M, Shen Y-M. Recent progresseson the fixation of carbon dioxide. CurrOrg Chem, 2003, 7: 737―745

doi: 10.2174/1385272033486693
Clifford A A. in: Kiran E, LeveltSengers J M H. Eds, Supercritical Fluids – Fundamentals for Application, Kluwer Academic Publishers: Dordrecht1994, 449―479
Cansell F, Aymonier C, Loppinet-Serani A. Review on materials scienceand supercritical fluids. Curr Opin, SolidState Mater Sci, 2003, 7: 331―340

doi: 10.1016/j.cossms.2004.01.003
Barnabas I J, Dean J R, Owen S P. Supercritical fluid extraction of analytesfrom environmental samples – a review. Analyst, 1994, 119: 2381―2394

doi: 10.1039/an9941902381
Del Valle J M, De La Fuente J C. Supercritical CO2 extraction of oilseeds:Review of kinetic and equilibrium models. Crit Rev Food Sci, Nutr, 2006, 46: 131―160

doi: 10.1080/10408390500526514
Palmer M V, Ting S S T. Applicationsfor supercritical fluid technology in food processingFood Chem.1995, 52: 345―352

doi: 10.1016/0308-8146(95)93280-5
Behr A. Carbon Dioxide as an Alternative C1 Synthetic Unit: Activationby Transition-Metal Complexes. Angew ChemInt Ed Engl, 1988, 27: 661―678

doi: 10.1002/anie.198806611
Elvers B, Hawkins S, Schulz G. (Eds.) Ulmann’s Encyclopediaof Industrial Chemistry A, vol. 21, fifth ed, VCH, Weinheim, Germany, 1992, 207
Beckman E J. Making polymers from carbon dioxide. Science, 1999, 283: 946―947

doi: 10.1126/science.283.5404.946
Kihara N, Hara N, Endo T. Catalytic activity of various salts inthe reaction of 2,3- epoxypropyl phenyl ether and carbon dioxide underatmospheric pressure. J Org Chem, 1993, 58: 6198―6202

doi: 10.1021/jo00075a011
Zhu H, Chen L B, Jiang Y-Y. Synthesis of propylene carbonate andsome dialkyl carbonates in the presence of bifunctional catalyst compositions. Polym Adv Tech, 1996, 7: 701―703

doi: 10.1002/(SICI)1099-1581(199608)7:8<701::AID-PAT563>3.0.CO;2-O
Zhao T, Han Y, Sun Y. Cycloaddition between propylene oxideand CO2 over metal oxide supported KI Phys. Chem Chem Phys. 1999, 1: 3047―3051

doi: 10.1039/a901943j
Iwasaki T, Kihara N, Endo T. Reaction of various oxiranesand carbon dioxide. Synthesis and aminolysis of five-membered cycliccarbonates. Bull Chem Soc Jpn, 2000, 73: 713―719

doi: 10.1246/bcsj.73.713
Nishikubo T, Kameyama A, Yamashita J, Tomoi M, Fukuda W. Insolublepolystyrene-bound quaternary onium salt catalysts for the synthesisof cyclic carbonates by the reaction of oxiranes with carbon dioxide. J Polym Sci A: Polym Chem, 1993, 31: 939―947

doi: 10.1002/pola.1993.080310412
Calo W, Nacci A, Monopoli A, Fanizzi A. Cycliccarbonate formation from carbon dioxide and oxiranes in tetrabutylammoniumhalides as solvents and catalysts. OrgLett, 2002, 4: 2561―2563

doi: 10.1021/ol026189w
Kossev K, Koseva N, Troev K. Calcium chloride as co-catalystof onium halides in the cycloaddition of carbon dioxide to oxiranes. J Mol Catal A: Chem, 2003, 194: 29―37

doi: 10.1016/S1381-1169(02)00513-7
Kawanami H, Ikushima Y. Chemicalfixation of carbon dioxide to styrene carbonate under supercriticalconditions with DMF in the absence of any additional catalysts. Chem Commun, 2000, 2089―2090

doi: 10.1039/b006682f
Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartrio R. Cycloaddition of CO2 to epoxidesover both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett, 2003, 44: 2931―2934

doi: 10.1016/S0040-4039(03)00424-6
Shen Y M, Duah W L, Shi M. Phenol and organic bases co-catalyzedchemical fixation of carbon dioxide with terminal epoxides to formcyclic carbonates. Adv SynthCatal, 2003, 345: 337―340

doi: 10.1002/adsc.200390035
Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxidewith an epoxide with retention of stereochemistry. Chem Commun, 1997, 1129―1130

doi: 10.1039/a608102i
Yamaguchi K. Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Almixed oxides as highly active acid-base catalysts for cycloadditionof carbon dioxide to epoxides. J Am ChemSoc, 1999, 121, 4526―4527

doi: 10.1021/ja9902165
Bhanage B M, Fujita S, Ikushima Y, Arai M. Synthesis of dimethyl carbonate and glycols from carbondioxide, epoxides, and methanol using heterogeneous basic metal oxidecatalysts with high activity and selectivity. Appl Catal A: Gen, 2001, 219: 259―266

doi: 10.1016/S0926-860X(01)00698-6
Yasuda H, He L N, Sakakura T. Cyclic carbonate synthesis from supercriticalcarbon dioxide and epoxide over lanthanide oxychloride. J Catal, 2002, 209: 547―550

doi: 10.1006/jcat.2002.3662
Doskocil E J, Bordawekar S V, Kaye B C, Davis R J. UV-vis spectroscopy of iodine adsorbed on alkali-metal-modifiedzeolite catalysts for addition of carbon dioxide to ethylene oxide. J Phys Chem B, 1999, 103: 6277―6282

doi: 10.1021/jp991091t
Tu M, Davis R J. Cycloadditionof CO2 to Epoxides over solid base catalysts. J Catal, 2001, 199: 85―91

doi: 10.1006/jcat.2000.3145
Srivastava R, Srinivas D, Ratnasamy P. Synthesis of polycarbonateprecursors over titanosilicate molecular sieves. Catal Lett, 2003, 91: 133―139

doi: 10.1023/B:CATL.0000006329.37210.fd
Fujita S, Bhanage B M, Ikushima Y, Arai M. Chemical fixation of carbon dioxide to propylene carbonateusing smectite catalysts with high activity and selectivity. Catal Lett, 2002, 79: 95―98

doi: 10.1023/A:1015396318254
Bhanage B M, Fujita S, Ikushima Y, Arai M. Synthesis of dimethyl carbonate and glycols from carbondioxide, epoxides and methanol using heterogeneous Mg containing smectitescatalysts: effect of reaction variables on activity and selectivityperformance. Green Chem, 2003, 5: 71―75

doi: 10.1039/b207750g
Nomura R, Ninagawa A, Matsuda H. Synthesis of cyclic carbonatesfrom carbon dioxide and epoxides in the presence of organoantimonycompounds as novel catalysts. J Org Chem, 1980, 45: 3735―3738

doi: 10.1021/jo01307a002
Baba A, Nozaki T, Matsuda H. Carbonate formation fromoxiranes and carbon dioxide catalyzed by organotin halide-tetraalkylphosphoniumhalide complexes. Bull Chem Soc Jpn, 1987, 60: 1552―1554

doi: 10.1246/bcsj.60.1552
Ji D, Lu X, He R. Syntheses of cyclic carbonates from carbon dioxide andepoxides with metal phthalocyanines as catalyst. Appl Catal A: Gen, 2000, 203: 329―333

doi: 10.1016/S0926-860X(00)00500-7
Kim H S, Kim J J, Lee B G, Jung O S, Jang H G, Kang S O. Isolation of a pyridinium alkoxy ion bridged dimericzinc complex for the coupling reactions of CO2 and epoxides. Angew Chem Int Ed Engl, 2000, 39: 4096―4098

doi: 10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
Paddock R L, Nguyen S T. Chemical CO2 fixation: CR(III) salen complexesas highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc, 2001, 123: 11498―11499

doi: 10.1021/ja0164677
Lu X-B, He R, Bai C-X. Synthesis of ethylene carbonate fromsupercritical carbon dioxide/ethylene oxide mixture in the presenceof bifunctional catalyst. J Mol Catal A,Chem, 2002, 186: 1―11

doi: 10.1016/S1381-1169(01)00442-3
Kim H S, Kim J J, Kwon H N, Chung M J, Lee B G, Jang H G. Well-defined highly active heterogeneous catalyst systemfor the coupling reactions of carbon dioxide and epoxides. J Catal, 2002, 205: 226―229

doi: 10.1006/jcat.2001.3444
Shen Y-M, Duan W-L, Shi M. Chemical fixation of carbon dioxide catalyzedby binaphthyldiamino Zn, Cu, and Co salen-type complexes. J Org Chem, 2003, 68: 1559―1562

doi: 10.1021/jo020191j
Li F W, Xia C G, Xu L W, Sun W, Chen G X. A novel and effective Nicomplex catalyst system for the coupling reactions of carbon dioxideand epoxides. Chem Commun, 2003, 2042―2043

doi: 10.1039/b305617a
Srivastava R, Srinivas D, Ratnasamy R. Synthesis of cyclic carbonatesfrom olefins and CO2 over zeolite-based catalysts. Catal Lett, 2003, 89, 81―85

doi: 10.1023/A:1024723627087
Paddock R L, Hiyama Y, McKay J M, Nguyen S T. Co(III) porphyrin/DMAP: An efficient catalyst systemfor the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett, 2004, 45: 2023―2026

doi: 10.1016/j.tetlet.2003.10.101
Peng J J, Deng Y Q. Cycloadditionof carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem, 2001, 25: 639―641

doi: 10.1039/b008923k
Yang H, Deng Y, Shi F. Electrochemical activation of carbondioxide in ionic liquid: synthesis of cyclic carbonates at mild reactionconditions. Chem Commun, 2002, 274―275

doi: 10.1039/b108451h
Kawanami H, Sakaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonateusing a supercritical CO2-ionic liquid system. Chem Commun, 2003, 896―897

doi: 10.1039/b212823c
Kim H S, Kim J J, Kim H, Jang H G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J Catal, 2003, 220: 44―46

doi: 10.1016/S0021-9517(03)00238-0
Darensbourg D J, Holtcamp M W. Catalysts for the reactions of epoxides and carbon Dioxide. Coord. Chem Rev, 1996, 153: 155―174

doi: 10.1016/0010-8545(95)01232-X
BASF starts alkylene carbonateplant, Filtration Industry Analyst, 1999, 27: 2
Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S. A novel non-phosgene polycarbonate production processusing by-product CO2 as starting materialGreen Chem, 2003, 5: 497―507

doi: 10.1039/b304963a
Jagtap S R, Bhanushali M J, Panda A G, Bhanage B M. Synthesis of cyclic carbonates from carbon dioxide andepoxides using alkali metal halide supported liquid phase catalyst. Cat Lett, 2006, 112: 51―55

doi: 10.1007/s10562-006-0163-2
Kihara N, Hara N, Endo T. Catalytic activity of various salts inthe reaction of 2,3- epoxypropyl phenyl ether and carbon dioxide underatmospheric pressure. J Org Chem, 1993, 58: 6198―6202

doi: 10.1021/jo00075a011
Du Y, Wang J Q, Chen J Y, Cai F, Tian J S, Kong D L, He L N. A poly(ethyleneglycol)-supported quaternary ammonium salt for highly efficient andenvironmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Lett, 2006, 47: 1271―1275

doi: 10.1016/j.tetlet.2005.12.077
Xiao L F, Li F W, Xia C G. An easily recoverable and efficient naturalbiopolymer-supported zinc chloride catalyst system for the chemicalfixation of carbon dioxide to cyclic carbonate. Appl Catal, A, 2005, 279: 125―129
Du Y, Cai F, Kong D L, He L N. Organic solvent-free process for the synthesis of propylene carbonatefrom supercritical carbon dioxide and propylene oxide catalyzed byinsoluble ion exchange resins. Green Chem, 2005, 7: 518―523

doi: 10.1039/b500074b
Shi F, Zhang Q H, Ma Y B, He Y D, Deng Y Q. From CO oxidation to CO2 activation: An unexpected catalytic activity of polymer-supportednanogold. J Am Chem Soc, 2005, 127: 4182―4183

doi: 10.1021/ja042207o
Alvaro M, Baleizao C, Carbonell E, El Ghoul M, Garcia H, Gigante B. Polymer-bound aluminium salencomplex as reusable catalysts for CO2 insertioninto epoxides. Tetrahedron, 2005, 61: 12131―12139

doi: 10.1016/j.tet.2005.07.114
Park D W, Yu B S, Jeong E S, Kim I, Kim M I, Oh K J, Park S W. Comparativestudies on the performance of immobilized quaternary ammonium saltcatalysts for the addition of carbon dioxide to glycidyl methacrylate. Catal Today, 2004, 98: 499―504

doi: 10.1016/j.cattod.2004.09.003
Nishikubo T, Kameyama A, Yamashita J, Fukumitsu T, Maejima C, Tomoi M J. Polym Sci Part A: PolymChem, 1995, 33: 1011

doi: 10.1002/pola.1995.080330702
Yamashita J, Kameyama A, Nishikubo T, Fukuda W, Tomoi M. Addition réactionof epoxy compounds with carbon dioxide using insoluble polymer supportedcrown ether as complexes as catalyst. KobunshiRonbunshu, 1993, 50: 577
Ramin M, Grunwaldt J D, Baiker A. Behavior of homogeneous andimmobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. J Catal, 2005, 234: 256―267

doi: 10.1016/j.jcat.2005.06.020
Alvaro M, Baleizao C, Das D, Carbonell E, Garcia H. CO2 fixation using recoverable chromium salen catalysts:Use of ionic liquids as cosolvent or high-surface-area silicates assupports. J Catal, 2004, 228: 254―258

doi: 10.1016/j.jcat.2004.08.022
Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T. Chem. Commun, 2006, 1664
Jagtap S R, Raje V P, Samant S D, Bhanage B M. Synthesis of cyclic carbonates from carbon dioxide and epoxides usingalkali metal halide supported liquid phase catalyst. J Mol Catal A: Chem, 2006, 266: 69―74

doi: 10.1016/j.molcata.2006.10.033
Boivin S, Chettouf A, Hemery P, Boileau S. Chemical modification of poly(vinyl chloroformate) andof its copolymers using phase transfer catalysis. Polym Bull, 1983, 9:114―120

doi: 10.1007/BF00275577
Khur R J, Dorough H W. Carbamate Insectiside Chemistry, Biochemistry and Toxicology, CRS Press, Cleveland, OH, 1976
Murahashi S I, Mitsue Y, Ike K. Palladium-catalysed crossdouble carbonylation of amines and alcohols: Synthesis of oxamates. J Chem Soc, Chem Commun, 1987, 125―127

doi: 10.1039/c39870000125
Cenini S, Pizzotti M, Crotti C, Porta F, La Monica G. Selectiveruthenium carbonyl catalysed reductive carbonylation of aromatic nitrocompounds to carbamates. J Chem Soc, ChemCommun, 1984, 1286―1287

doi: 10.1039/c39840001286
Olofson R A, Wooden G P, Marks J T. Eur Patent 104984, Chem Abstr, 1984, 101: 190657u 104
Overberger C G, Ringsdorf H, Weinshenker N. Preparation and polymerizationof S-, O-, and N-vinyl derivativesof carbonic acid. Unsaturated carbonic acid derivatives. II. J Org Chem, 1962, 27: 4331―4337

doi: 10.1021/jo01059a047
Olofson R A, Bauman B A, Vancowicz D J. Synthesis of enol chloroformates. J Org Chem, 1978, 43: 752―754

doi: 10.1021/jo00398a058
Olofson R A, Schnur R C, Bunes L, Pepe J P. Selective N dealkylation of tertiary amines with vinylchloroformate: An improved synthesis of naloxone Tetrahedron Lett, 1977, 1567―1570

doi: 10.1016/S0040-4039(01)93104-1
Sasaki Y, Dixneuf P H. A novel catalytic synthesis of vinyl carbamates from carbon dioxide,diethylamine, and alkynes in the presence of Ru3(CO)12. J ChemSoc, Chem Commun, 1986, 790―791

doi: 10.1039/c39860000790
Mahe R, Sasaki Y, Bruneau C, Dixneuf P H. Catalytic synthesis of vinyl carbamates from carbon dioxideand alkynes with ruthenium complexes. JOrg Chem, 1989, 54: 1518―1523

doi: 10.1021/jo00268a008
Sasaki Y, Dixneuf P H. Ruthenium-catalyzed synthesis of vinyl carbamates from carbon dioxide,acetylene, and secondary amines. J OrgChem, 1987, 52: 314―315

doi: 10.1021/jo00378a039
Bruneau C, Dixneuf P H, Lecolier S. Acetylene in catalysis: aone-step synthesis of vinylcarbamates with [RuCl2(norbornadiene)]n. J Mol Catal, 1988, 441: 75―178
Mitsudo T-A, Hori Y, Yamakawa Y, Watanabe Y. Rutheniumcatalyzed selective synthesis of enol carbamates by fixation of carbondioxide. Tetrahedron Lett, 1987, 28: 4417―4418

doi: 10.1016/S0040-4039(00)96526-2
Nandurkar N S, Bhanushali M J, Bhor M D, Bhanage B M. N-Arylation of aliphatic,aromatic and heteroaromatic amines catalyzed by copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) Tetrahedron Lett, 2007, 48: 6573―6576

doi: 10.1016/j.tetlet.2007.07.009
Tambade P J, Patil Y P, Nandurkar N S, Bhanage B M. Copper-catalyzed, palladium free carbonaylative sonogashiracoupling raction of aliphatic and aromatic alkynes with iodoaryls. Synlettt, 2008, 6: 886―888
Tambade Pawan J, Patil Yogesh P, Bhanage Bhalchandra M. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate)catalyzed alkoxycarbonylation and aminocarbonylation reactions. App Organo Chem, 23(6): 235―240
Tambade Pawan J, Patil Yogesh P, Panda A G, Bhanage B M. Phosphane-free palladium-catalyzed carbonylative suzukicoupling reaction of aryl and heteroaryl iodides. Eur J Org Chem, 2009, 18: 3022―3025

doi: 10.1002/ejoc.200900219
Patil Y P, Tambade P J, Nandurkar N S, Bhanage B. M. Ruthenium tris(2,2,6,6 tetramethyl-3,5-heptanedionate)catalyzed synthesis of vinyl carbamates using carbon dioxide, aminesand alkynes. Cat Com, 2008, 9: 2068―2072

doi: 10.1016/j.catcom.2008.04.001
Bruce M I, Swincer A G. Vinylidene and propadienylidene (allenylidene) metal complexes. Adv Organomet Chem, 1983, 22: 59―128

doi: 10.1016/S0065-3055(08)60401-3
Brookhart M S, Tucker J R, Husk G R. Transfer reactions of electrophiliciron carbene complexes Cp(CO)(L)Fe= CHR+, L= CO, P(C6H5)3; R= CH3, CH2CH3, CH(CH3)2. J Am Chem Soc, 1983, 105: 258―264

doi: 10.1021/ja00340a020
Kagara K, Goto S, Tsuboi H. JP, 1989, 1025767. Chem Abstr, 1989, 111: 97274
Mohri S. Research and development of synthetic processes for pharmaceuticals:Pursuit of rapid, inexpensive, and good processes. J Synth Org. Chem. Jpn, 2001, 59(5): 514―515
Merck Index, 12th ed.Merck & Co. Inc. Whitehouse Station NJ, 1996, 7897
Merck Index, 12th ed.Merck & Co. Inc. Whitehouse Station NJ, 1996, 1512
Merck Index, 12th ed.Merck & Co. Inc. Whitehouse Station NJ, 1996, 3489
Pastor G, Blanchard C, Montginoul C, Torreilles E, Giral L, Texier A. Bull Soc Chim Fr, 1975, 1331―1338
Khalifa M, Osman A N, Ibrahim M G, Ossaman A R E, Ismail M A. Synthesis and biologicalactivity of certain derivatives of 2,4-dioxo-1,2,3,4-tetrahydroquinazoline. Part 2 Pharmazie, 1982, 37: 115―117
Michman M, Patai S, Wiesel Y. Org Prep Proced Int, 1978, 10: 13

doi: 10.1080/00304947809354998
Lange N A, Sheibley F E. Org Synth Coll, Vol II, John Wiley &Sons: London, 943, 79
Vorbrueggen H, Krolikiewicz K. Theintroduction of nitrile-groups into heterocycles and conversion ofcarboxylic groups into their corresponding nitriles with chlorosulfonylisocyanateand triethylamine. Tetrahedron, 1994, 50: 6549―6558

doi: 10.1016/S0040-4020(01)89685-X
Mizuno T, Okamoto N, Ito T, Miyata T. Synthesis of 2,4-dihydroxyquinazolines using carbon dioxidein the presence of DBU under mild conditions. Tetrahedron Lett, 2000, 41: 1051―1053

doi: 10.1016/S0040-4039(99)02231-5
Mizuno T, Okamoto N, Ito T, Miyata T. Synthesis of quinazolines using carbon dioxide (or carbonmonoxide with sulfur) under mild conditions. Heteroat Chem, 2000, 11: 428―433

doi: 10.1002/1098-1071(2000)11:6<428::AID-HC12>3.0.CO;2-Z
Mizuno T, Ishino Y. Highlyefficient synthesis of 1H-quinazoline-2,4-dionesusing carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron, 2002, 58: 3155―3158

doi: 10.1016/S0040-4020(02)00279-X
Mizuno T, Iwai T, Ishino Y. The simple solvent-free synthesis of1H-quinazoline-2,4- diones usingsupercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett, 2004, 45: 7073―7075

doi: 10.1016/j.tetlet.2004.07.152
Mizuno T, Mihara M, Nakai T, Iwai T, Ito T. Solvent-freesynthesis of urea derivatives from primary amines and sulfur undercarbon monoxide and oxygen at atmospheric pressure. Synthesis, 2007, 16: 2524―2528

doi: 10.1055/s-2007-983808
Patil Y P, Tambade P J, Jagtap S R, Bhanage B M. Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1H,3H)-dionesusing carbon dioxide and 2-aminobenzonitriles. Green Chem Lett Rev. 2008, 1 (2): 127:132

doi: 10.1080/17518250802331181
Lehmann F. Spotlight, Cesium carbonate (Cs2CO3). Synlett, 2004, 13: 2474
Jung K W. US Patent, 2002, 6399808
Li P, Xu J C. Highly efficientsynthesis of sterically hindered peptides containing N-methylated amino acid residues using anovel 1H-benzimidazolium salt. Tetrahedron, 2000, 56: 9949―9955

doi: 10.1016/S0040-4020(00)00963-7
Sato Y, Yamamoto T, Souma Y. Poly(pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidativecarbonylation of methanol: catalytic activity and corrosion influence. Catal Lett, 2000, 65: 123―126

doi: 10.1023/A:1019033725260
Pacheco M A, Marshall C L. Review of dimethyl carbonate (DMC) manufacture and its characteristicsas a fuel additive. Energy Fuels, 1997, 11: 2―29

doi: 10.1021/ef9600974
Jessop P J, Brass S G, Croudace M C. Gasoline composition containingcarbonates. US Patent, 1986, 4600408
Tundo P. New developments in dimethyl carbonate chemistry. Pure Appl Chem, 2001, 73: 1117―1124

doi: 10.1351/pac200173071117
Rivetti F, Romano U, Delledonne D, Anastas P T, Williamson T C. (Eds.), Green Chemistry. Designing chemistry forthe environment, ACS Symposium Series No. 626, American Chemical Society, Washington,DC, 1996, 70
Rivetti F, in: Anastas P T, Tundo (Eds.) P, Green Chemistry:Challenging Pespectives, Oxford UniversityPress, Oxford, 2001, 201
Kizlink J, Pastucha I. Correct Czech Chem Commun, 1993, 58: 1399―1402
Kizlink J, Pastucha I. Correct Czech Chem Commun, 1994, 59: 2116―2118
Kizlink J, Pastucha I. Correct Czech Chem Commun, 1995, 60: 687―692
Sakakura T, Saito Y, Okano M, Choi J-C, Sako T. Selective conversion of carbondioxide to dimethyl carbonate by molecular catalysis. J Org Chem, 1998, 63: 7095―7096

doi: 10.1021/jo980460z
Isaacs N S, O’Sullivan B, Verhaelen C. High pressure routes to dimethylcarbonate from supercritical carbon dioxide. Tetrahedron, 1999, 55: 11949―11956

doi: 10.1016/S0040-4020(99)00693-6
Fang S, Fujimoto K. Directsynthesis of dimethyl carbonate from carbon dioxide and methanol catalyzedby base. Appl Catal A: Gen, 1996, 142: L1―L3

doi: 10.1016/0926-860X(96)00081-6
Fujita S, Bhanage B M, Ikushima Y, Arai M. Synthesis of dimethyl carbonate from carbon dioxide andmethanol in the presence of methyl iodide and base catalysts undermild conditions: effect of reaction conditions and reaction mechanism, Green Chem, 2001, 3: 87―91

doi: 10.1039/b100363l
Tomishige K, Sakaihori T, Ikeda Y, Fijimoto K. A novel method of direct synthesis of dimethyl carbonatefrom methanol and carbon dioxide catalyzed by zirconia. Catal Lett, 2000, 58: 225―229

doi: 10.1023/A:1019098405444
Ikeda Y, Sakaihori T, Tomishige K, Fijimoto K. Promoting effect of phosphoric acid on zirconia catalystsin selective synthesis of dimethyl carbonate from methanol and carbondioxide. Catal Lett, 2000, 66: 59―62

doi: 10.1023/A:1019043422050
Tomishige K, Sakaihori T, Ikeda Y, Fijimoto K. Catalytic properties and structure of zirconia catalystsfor direct synthesis of dimethyl carbonate from methanol and carbondioxide. J Catal, 2000, 192: 355―362

doi: 10.1006/jcat.2000.2854
Tomishige K, Kanamori K. Catalyticand direct synthesis of dimethyl carbonate starting from carbon dioxideusing CeO2-ZrO2 solidsolution heterogeneous catalyst: Effect of H2O removal from the reaction system. ApplCatal. A: Gen, 2002, 237: 103―109

doi: 10.1016/S0926-860X(02)00322-8
Jung K T, Bell A T. An in Situ infrared study of dimethyl carbonatesynthesis from carbon dioxide and methanol over zirconia, J Catal, 2001, 204: 339―347

doi: 10.1006/jcat.2001.3411
Jung K T, Bell A T. Effects ofcatalyst phase structure on the elementary processes involved in thesynthesis of dimethyl carbonate from methanol and carbon dioxide overzirconia. Topics Catal, 2002, 20: 97―105

doi: 10.1023/A:1016307617328
Jiang C, Guo Y, Wang C, Hu C, Wu Y, Wang E. Synthesis of dimethyl carbonate from methanol and carbondioxide in the presence of polyoxometalates under mild conditions. Appl Catal A: Gen, 2003, 256: 203―212

doi: 10.1016/S0926-860X(03)00400-9
Chem Eng News, 4May1992, 25
Knifton J F. US Patent, 1987, 4661609
Duranleau R G, Nieh E C Y, Knifton J F. US Patent, 1987, 4691041
Knifton J F, Duranleau R G. Ethylene glycol-dimethyl carbonate cogeneration. J Mol Catal, 1991, 67: 389―399

doi: 10.1016/0304-5102(91)80051-4
Watanabe Y, Tatsumi T. Hydrotalcite-typematerials as catalysts for the synthesis of dimethyl carbonate fromethylene carbonate and methanol, Micropor. Mesopouro. Matter, 1998, 22: 399

doi: 10.1016/S1387-1811(98)00099-7
Tatsumi T, Watanabe Y, Koyano K A. Synthesis of dimethyl carbonatefrom ethylene carbonate and methanol using TS-1 as solid base catalyst. Chem. Commun, 1996, 2281―2283

doi: 10.1039/cc9960002281
Knifton J F. US Patent, 1993, 5214182
Bhanage B M, Fujita S, He Y, Ikushima Y, Shirai M, Torri K, Arai M. Concurrent synthesis of dimethyl carbonate and ethyleneglycol via transesterificationof ethylene carbonate and methanol using smectite catalysts containingMg and/or Ni. Catal Lett, 2002, 83: 137―141

doi: 10.1023/A:1021065409888
Sriniwas D, Srivasatava R, Ratnasamy P. Transesterifications overtitanosilicate molecular sieves. CatalToday, 2004, 96: 127―133

doi: 10.1016/j.cattod.2004.06.113
Fujita S, Arai M. Chemical fixationof carbon dioxide: Synthesis of cyclic carbonate, dimethyl carbonate,cyclic urea and cyclic urethane. J JapPet Inst, 2005, 48: 67―75

doi: 10.1627/jpi.48.67
Li Y, Zhao X Q, Wang Y J. Synthesis of dimethyl carbonate frompropylene oxide, carbon dioxide and methanol on KOH/4A molecular sievecatalyst. Chin J Cat, 2004, 25: 633
Feng S J, Lu Z B, He R. Tertiary amino group covalently bonded to MCM-41 silicaas heterogeneous catalyst for the continuous synthesis of dimethylcarbonate from methanol and ethylene carbonate. Appl Catal A, Gen, 2004, 272: 347―352

doi: 10.1016/j.apcata.2004.06.007
Buysch H J, Klausener A, Langer R F, Mais J. Ger Offen DE, 1991, 4129316
Frevel L K, Gilpin J A. US Patent, 1972, 3642858
Jagtap S R, Bhanushali M J, Panda A G, Bhanage B M. Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanolusing poly-4-vinyl pyridine as a novel base catalyst. Cat Comm, 2008, 122: 1928―1931

doi: 10.1016/j.catcom.2008.03.029
Dyen M E, Swern D. 2-Oxazolidones, Chem Rev, 1967, 67: 197―246

doi: 10.1021/cr60246a003
Pancartov V A, Frenkel T M, Fainleib A M. 2-Oxazolidinones. Russ Chem Rev, 1983, 52: 576―593

doi: 10.1070/RC1983v052n06ABEH002864
Kudo N, Taniguchi M, Furuta S, Endo T, Honma T. Synthesis andherbicidal activities of 4-Substituted 3-aryl-5-tert-butyl-4-oxazolin-2-ones. Agric Food Chem, 1998, 46: 5305―5312

doi: 10.1021/jf980281i
Ednie L M, Jacobe M R, Appelbaum P C, Anti-anaerobic activity ofAZD2563, a new oxazolidinone, compared with eight other agents. Antimicrob J Chemother, 2002, 50: 101―105

doi: 10.1093/jac/dkf088
Gravestock M B, Acton D G, Betts M J, Dannis M, Hatter G, McGregor A, Swain M L, Wilson R G, Woods L, Wookey A. New classes of antibacterialoxazolidinones with C-5, methylene O-linked heterocyclic side chains. Bioorg.Med Chem Lett, 2003, 13: 4179―4186

doi: 10.1016/j.bmcl.2003.07.033
Gregory W A, Brittelli D R, C Wang L-J, Wuonola M A, McRipey R J, Eustice D C, Everly V S, Bartholomew P T, Slee A M, Forbes M. Antibacterials. Synthesis and structure-activity studiesof 3-aryl-2-oxooxazolidines. 1. The “B” group. J Med Chem, 1989, 32: 1673―1681

doi: 10.1021/jm00128a003
Seneci P, Caspani M, Ripamonti F, Ciabatti R. Synthesis and antimicrobial activity of oxazolidin-2-onesand related heterocycles. J Chem Soc, PerkinTrans, 1994, 1: 2345―2351

doi: 10.1039/p19940002345
O’Hagan D, Tavasli M. Ashort synthesis of (S)-α-(diphenylmethyl)alkyl amines fromamino acids. Tetrahedron: Asymmetry, 1999, 10:1189―1192

doi: 10.1016/S0957-4166(99)00095-6
Seydenpenne J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis, Wiley, New York, 1995
Ager D J, Prakash I, Schaad D R. 1,2-Amino alcohols and theirheterocyclic derivatives as chiral auxiliaries in asymmetric synthesis Chem Rev, 1996, 96: 835―875

doi: 10.1021/cr9500038
Hodge C N, Lam P Y S, Eyermann C J, Jadhav P K, Fernandez Ru Y, De Lucca C H, Chang CH, Kaltenbach R J C, Aldrich P E, Calculated and experimentallow-energy conformations of cyclic urea HIV protease inhibitors. J Am Chem Soc, 1998, 120: 4570―4581

doi: 10.1021/ja972357h
Puschin N A, Mitic R V. JustusLiebigs Ann Chem, 1937, 532: 300

doi: 10.1002/jlac.19375320125
Wilson A L. US Patent, 1950, 2517750
Fu Y, Baba T, Ono Y. Carbonylation of o-phenylenediamine and o-aminophenol with dimethyl carbonate using lead compounds as catalysts. J Catal, 2001, 197: 91―97

doi: 10.1006/jcat.2000.3075
Baba T, Kobayashi A, Yamauchi T, Tanaka H, Aso S. Inomata M, Kawanami Y. Catalyticmethoxycarbonylation of aromatic diamines with dimethyl carbonateto their dicarbamates using zinc acetate. Catal Lett, 2002, 82: 193―197

doi: 10.1023/A:1020566928295
Gabriele B, Salerno G, Brindisi D, Costa M, Chiusoli G P. Synthesis of 2-oxazolidinones by direct palladium-catalyzed oxidativecarbonylation of 2-amino-1-alkanols. OrgLett, 2000, 2: 625―627

doi: 10.1021/ol9913789
Buckley G D, Ray N H, USPatent, 1951, 2550767
Ono Y. Dimethyl carbonate for environmentally benign reactions. Catal Today, 1997, 35: 15―25

doi: 10.1016/S0920-5861(96)00130-7
Pachenco M A, Marshall C L. Review of dimethyl carbonate (DMC) manufacture and its characteristicsas a fuel additive. Energy Fuels, 1997, 11: 2―29

doi: 10.1021/ef9600974
Bank M R, Cadgan J I G, Thomas D E. 1,3-Oxazolidin-2-ones from1H-aziridines by a novel stratagem which mimics the direct insertionof CO2. J Chem Soc,Perkin Trans I, 1991, 961―962

doi: 10.1039/p19910000961
Bhanage B, Fujita S I, Ikushima Y, Arai M. Non-catalytic clean synthesis route using urea to cyclicurea and cyclic urethane compounds. GreenChem, 2004, 6: 78―80

doi: 10.1039/b310115k
Bhanage B M, Fujita S I, Ikushima Y, Arai M. Synthesis of cyclic ureas and urethanes from alkylenediamines and amino alcohols with pressurized carbon dioxide in theabsence of catalysts. Green Chem, 2003, 5: 340―342

doi: 10.1039/b300778b
Xiao L F, Xu L W, Xia C G. A method for the synthesis of 2-oxazolidinonesand 2-imidazolidinones from five-membered cyclic carbonates and-aminoalcoholsor 1,2-diamines. Green Chem, 2007, 9: 369―372

doi: 10.1039/b609967j
Tu M, Davis R J. Cycloadditionof CO2 to epoxides over solid base catalysts. J Catal, 2001, 199: 85―91

doi: 10.1006/jcat.2000.3145
Sun J, Fujita S I, Bhanage B M, Arai M. One-pot synthesis of styrene carbonate from styrene intetrabutylammonium bromide. Catal Today, 2004, 93―95: 383―388

doi: 10.1016/j.cattod.2004.06.105
Jagtap S R, Patil Y P, Fujita S I, Arai M, Bhanage B M. Heterogeneous base catalyzedsynthesis of 2-oxazolidinones/2-imidiazolidinones via transesterification of ethylene carbonate with β-aminoalcohols/1,2-diamines. Appl Catal A: Gen, 2008, 341: 133―138

doi: 10.1016/j.apcata.2008.02.035
Patil Y P, Tambade P J, Jagtap S R, Bhanage B M. Synthesis of 2-oxazolidinones/2-imidazolidinones fromCO2, different epoxides and amino alcohols/alkylenediamines using BrPh3+P-PEG600-P+Ph3Br as homogenous recyclable catalyst. J Mol Cata A. Chem, 2008, 289: 14―21
Bigi F, Maggi R, Sartori G. Selected syntheses of ureas through phosgenesubstitutes. Green Chem, 2000, 2: 140―148

doi: 10.1039/b002127j
Getman D P, DeCrescenzo G A, Heintz R M, Reed K L, Talley J J, Bryant M L, Clare M, Houseman K A, Marr J J, Mueller R A, Vazquez M L H, Shieh S, Stallings W C, Stageman R A. Discovery of a novel class of potent HIV-1 protease inhibitors containingthe (R)- (hydroxyethyl)urea isostere. J Med Chem, 1993, 36: 288―291

doi: 10.1021/jm00054a014
Sonoda N, Yasuhara T, Kondo K, Ikeda T, Tsutsumi S. Newsynthesis of ureas. Reaction of ammonia or aliphatic amines with carbonmonoxide in the presence of selenium. JAm Chem Soc, 1971, 93: 6344

doi: 10.1021/ja00752a099
Giannoccaro P. Palladium-catalysed N,N'-disubstituted urea synthesisby oxidative carbonylation of amines under CO and O2 at atmospheric pressure. J OrganometChem, 1987, 336: 271―278

doi: 10.1016/0022-328X(87)87174-7
Choudary B M, Rao K K A, Pirozhokov S D, Lapidus A L. Conversion of primary amines to N,N'-disubstitutedureas using montmorillonitebipyridinepalladium(II)-acetate and di-tertbutyl peroxide. Synth Commun, 1991, 21: 1923―1927

doi: 10.1080/00397919108021783
Kelkar A A, Kolhe D S, Kanagasabapathy S, Chaudhari R V. Ind Eng Chem Res, 1992, 31: 172

doi: 10.1021/ie00001a024
Shi F, Deng Y. First gold(I)complex-catalyzed oxidative carbonylation of amines for the synthesesof carbamates Chem. Commun, 2001, 443―444

doi: 10.1039/b009575n
Bartolo G, Salerno G, Mancuso R, Costa M. Efficient synthesis of ureas by direct palladium- catalyzedoxidative carbonylation of amines. J OrgChem, 2004, 69: 4741―4750

doi: 10.1021/jo0494634
McCusker J E, Main A D, Johnson K S, Grasso C A, McElwee-White L. W(CO)6-Catalyzed oxidative carbonylation of primary amines to N,N'-disubstitutedureas in single or biphasic solvent systems. optimization and functional group compatibility studies J Org Chem, 2000, 65: 5216―5222

doi: 10.1021/jo000364+
Shi F, Deng Y Y, Sima T L, Yang H Z. A novel ZrO2SO42 supported palladium catalyst for syntheses of disubstitutedureas from amines by oxidative carbonylation. Tetrahedron lett, 2001, 42: 2161―2163

doi: 10.1016/S0040-4039(01)00124-1
Enquist Per-Anders P, Nilsson J Edin, Larhed M. Super fast cobalt carbonyl-mediatedsynthesis of ureas. Tethrahedron lett, 2005, 46: 3335―3339
Gabriele B, Salerno R, Mancuso, Costa M. Efficient synthesis of ureas by direct palladium-catalyzedoxidative carbonylation of amines. J OrgChem, 2004, 69: 4741―4750

doi: 10.1021/jo0494634
Nagaraju N, Kuriakose G. Anew catalyst for the synthesis of N,N-biphenylurea from aniline anddimethyl carbonate Green Chem, 2002, 4: 269―271

doi: 10.1039/b200431n
Li Q-F, Wang J W, Dong W S, Kang M Q, Wang X K, Peng Y S. A phosgene-free process for the synthesis of methyl N-phenyl carbamate by the reaction of anilinewith methyl carbamate. J Mol Catal. A:Chem, 2004, 212: 99―105

doi: 10.1016/j.molcata.2003.11.002
Ion A, Parvulescu V, Jacobs P, De Vos D. Synthesis of symmetrical or asymmetrical urea compoundsfrom CO2via base catalysis, Green Chem, 2007, 9: 158―161

doi: 10.1039/b612403h
Jiang T, Ma X, Zhou Y, Liang S, Zhang J, Han B. Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chem, 2008, 10: 465―469

doi: 10.1039/b717868a
Ogura H, Tekeda K, Tokue R, Kobayashi T. A convenient direct synthesis of ureas from carbon dioxideand amines. Synthesis, 1978, 394―396

doi: 10.1055/s-1978-24761
Fournier J, Bruneau C, Dixneuf P H, Lecolier S. Ruthenium-catalyzed synthesis of symmetrical N,N-dialkylureasdirectly from carbon dioxide and amines. J Org Chem, 1991, 56: 4456―4458

doi: 10.1021/jo00014a024
Cooper C F, Falcone S J. A simple one-pot procedure for preparing symmetrical diaryllureasfrom carbon dioxide and aromatic amines. Synth Commun, 1995, 25: 2467―2475

doi: 10.1080/00397919508015452
Yamazaki N, Higashi F, Iguchi T. Carbonylation of amines withcarbon dioxide under atmospheric conditions. Tetrahedron Lett, 1974, 13: 1191―1194

doi: 10.1016/S0040-4039(01)82442-4
Nomura R, Hasegawa Y, Ishimoto M, Toyosaki T, Matsuda H. Carbonylationof amines by carbon dioxide in the presence of an organoantimony catalyst. J Org Chem, 1992, 57: 7339―7342

doi: 10.1021/jo00052a060
Fournier J, Bruneau C, Dixneuf P H, Lecolier S. Ruthenium-catalyzed synthesis of symmetrical N,N-dialkylureasdirectly from carbon dioxide and amines. J Org Chem, 1991, 56: 4456―4458

doi: 10.1021/jo00014a024
Yamazaki N, Higashi F, Iguchi T. Carbonylation of amines withcarbon dioxide under atmospheric conditions. Tetrahedron Lett, 1974, 13: 1191―1194

doi: 10.1016/S0040-4039(01)82442-4
Aresta M, Quaranta E, Tommasi I, Giannocarro P, Ciccarese A. Gazz Chim Ital, 1995, 125: 509
Hayashi T, Yasuoka J. EP, 1998, 846679 (to Sumika Fine Chemicals Co.)
Fujita S, Bhanage B. M, Arai M. Synthesis of N,N-disubstitutedurea from ethylene carbonate and amine using CaO. Chem Lett, 2004, 33: 742―743

doi: 10.1246/cl.2004.742
Fujita S, Bhanage B M, Kanamura H, Arai M, Synthesis of 1,3-dialkylurea from ethylene carbonateand amine using calcium oxide. J Mol CatalA: Chem, 2005, 230: 43―48

doi: 10.1016/j.molcata.2004.12.014
Jagtap S R, Patil Y P, Fujita S I, Arai M, Bhanage B M. Synthesis of 1,3-disubstitutedsymmetrical/unsymmetrical ureas via Cs2CO3-catalyzed transaminationof ethylene carbonate and primary amines. Syn Comm, 2009, 39: 2093―2100

doi: 10.1080/00397910802638503
Ostrowicki A, Vogtle F. InTopics In Current Chemistry; Weber E, Vogtle F, Eds. Springer-Verlag: Heidelberg, 1992, 161: 37
Galli C. “Cesium ion effect” and macrocyclization.a critical review. Org Prep Proced Int, 1992, 24: 287―307

doi: 10.1080/00304949209355891
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed