Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2009, Vol. 3 Issue (4) : 436-442    https://doi.org/10.1007/s11705-009-0251-0
Research articles
Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: A review
Xiaoming LIU1,Jia NING1,Stephanie CLARK2,
1.State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; 2.Department of Food Science and Human Nutrition, Iowa State University, Ames, IA50011-1061, USA;
 Download: PDF(139 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High hydrostatic pressure (HHP) is an alternative technology to heat processing for food product modifications. It does not cause environmental pollution and eliminates the use of chemical additives in food products. This review covers the research conducted to understand the effect of HHP on structure and functional properties of whey proteins. In this paper, the mechanism underlying pressure-induced changes in β-lactoglobulin and α-lactabumin is also discussed and how they related to functional properties such as hydrophobicity, foam stability, and flavor-binding capacity.
Issue Date: 05 December 2009
 Cite this article:   
Jia NING,Xiaoming LIU,Stephanie CLARK. Changes in structure and functional properties of whey proteins induced by high hydrostatic pressure: A review[J]. Front. Chem. Sci. Eng., 2009, 3(4): 436-442.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0251-0
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I4/436
Marshall K R. Developments in Dairy Chemistry. London: Elsevier Applied Science Publishers, 1982, 339―373
Morr C V, Ha E Y W. Whey protein concentratesand isolates: processing and functional properties. CRC Crit Rev Food Sci Nutr, 1993, 33: 431―476
American Dairy Products Institute. Whey products: 1998 utilization and production trends. American Dairy Products Institute, Chicago, 1999
Yang S T, Silva E M. Novel products and new technologiesfor use of a familiar carbohydrate, milk lactose. J Dairy Sci, 1995, 78: 2541―2562
U.S. Diary Export Council. Product specifications. U.S. Dairy ExportCouncil. Arlington, VA, USA, 1999
King L. Wheyprotein concentrates as ingredients. Foodtech Europe, 1996, 124: 88―89
Coton G, Clark W S, Hopkin E. Trends in Whey Utilization. Btussels: International DairyFederation, 1987, 135―144
Zhou P, Liu X M, Labuza T P. Moisture-induced aggregation of whey proteins in a protein/buffermodel system. J Agric Food Chem, 2008, 56: 2048―2054

doi: 10.1021/jf073151v
Martin M F S, Barbosa-Cánovas G V, Swanson B G. Food processing by high hydrostaticpressure. CRC Crit Rev Food Sci Nutr, 2002, 42: 627―645
Knorr D. Hydrostaticpressure treatment of food: microbiology. In: Gould G W, ed. New Methods of Food Preservation. New York: Blackie Academic andProfessional, 1995a, 159―172
Knorr D. Highpressure effects on plant derived foods. In: Ledward D A, Johnson D E, Earnshaw R P, Hasting A P M, eds. High Pressure Processing of Foods. Nottingham: Nottingham Universitypress, 1995b, 123―136
Cheftel J C. Effects of high hydrostatic pressure on food constituents: an overview. In: Balny C, Hayashi R, Heremans K, Masson P, eds. High Pressure and Biotechnology. Montrouge, France: John Libbey Eurotext, 1992, 195―204
Kadharmeston C. Thermalproperty and functionality of whey protein concentrate treated byheat or high hydrostatic. Dissertationfor the Master Degree. Washington: Washington State University, 1998, 17―20
Palou E, Lopez-Malo A, Barbosa-Canovas G, Swanson B G. High-Pressure Treatment in Food Preservation. In: Rahman M S, Ed. Handbook of Food Preservation. New York: Marcel Dekker, 1993, 533―576
Hayashi R. Advancesin high pressure processing technology in Japan. In: Gaonkar A G, ed. Food Processing: Recent Developments. London: Elsevier, 1995, 85―94
William A. Newtechnologies in food preservation and processing: partII. Nutr Food Sci, 1994, 1: 16―22
Hoover D G. High-pressure pasteurization. ActivitiesReport of the R & D Associates, 1997, 49: 294―296
Hayashi R, Balny C. Technique of quality controlfor Sudachi (Citrus sudachi Hort.Ex Shirai) juice by high pressure treatment. In: High Pressure Bioscience and Biotechnology. Amsterdam: Elsevier Science BV, 1996a, 387―390
Hayashi R, Balny C. High pressure inactivationof yeast cells in saline and strawberry jam at low temperatures. In: High Pressure Bioscience and Biotechnology. Amsterdam: Elsevier Science BV, 1996b, 423―428
Palou E, López-Malo A, Barbosa-Cánovas G V, Swanson B G. High-Pressure Treatment in Food Preservation. In: Handbook of Food Preservation. New York: Marcel Dekker, 1994, 533―576
Hashizume C, Kimura K, Hayashi R. Kinetic analysis of yeast inactivation by high pressuretreatment at low temperatures. Biosci BiotechBiochem, 1996, 59: 1455―1503

doi: 10.1271/bbb.59.1455
Smelt J, Rijike G. High pressure treatment asa tool for pasteurization of foods. InHigh Pressure and Biotechnology. Colloque INSERM, Institut Natl DeLA Sante, Vol. 224, 1993, 361―373
Cheftel J C. High-pressure, microbial inactivation and food preservation. Int J Food Sci Tech, 1995, 1: 75―82

doi: 10.1177/108201329500100203
Ledward D A. High pressure processing—the potential. In: Ledward D A, Johnson D E, Earnshaw R G, Hasting A P M, eds. High Pressure Processing of Foods. Nottingham: Nottingham UniversityPress, 1995, 1―11
Lassalle M W, Li H, Yamada H, Akasaka H, Redfield C. Pressure-induced unfoldingof the molten globule of all-Ala―lactalbumin. Protein Sci, 2003, 12: 66―72

doi: 10.1110/ps.0221303
Wu J W, Wang Z X. New evidence for the denaturantbinding model. Protein Sci, 1999, 8: 2090―2097

doi: 10.1110/ps.8.10.2090
AbouAiad T, Becker U, Biedenkap R, Brengelmann R, Elsebrock R, Hinz H J, Stockhausen M. Dielectricrelaxation of aqueous solutions of ribonuclease A in the absence andpresence of urea. Berichte Bunsen Gesellschaft Physi Chem. Chem Phys, 1997, 101: 1921―1927
Weber G, Drickamer H G. The effect of high pressureupon proteins and other biomolecules. QRev Biophys, 1983, 16: 89―112

doi: 10.1017/S0033583500004935
Inoue K, Yamada H, Akasaka K, Herrmann C, Kremer W, Maurer T, Doeker R, Kalbitzer H R. Pressure-induced local unfoldingof the Ras-binding domain of RalGEF. NatStruct Biol, 2000, 7: 547―550

doi: 10.1038/80947
Hummer G, Grade S, Garcia A E, Paulatis M P, Pratt L R. The pressure dependence ofhydrophobic interactions is consistent with the observed pressuredenaturation of proteins. Proc Natl AcadSci USA, 1998, 95: 1552―1555

doi: 10.1073/pnas.95.4.1552
Richards F M. Native collegan has a two-bonded structure. J Mol Biol, 1974, 83: 1―14

doi: 10.1016/0022-2836(74)90570-1
Masson P, Cléry C. Pressure-induced molten globulestates of proteins. In: Hayashi R, ed. High Pressure Bioscience andBiotechnology. London: Elservier Applied Science Publishers, 996, 117―126
Sloan E D. Introduction. In: Sloan E D, ed. Clathrate Hydratesof Natural Gases. New York: Marcel Dekker, 1990, 1―11
Masson P. Pressuredenaturation of proteins. In: Balny C, Hayashi R, Heremans K, Masson P, eds. High Pressure and Biotechnology. Colloque INSERM Vol 224. Montrouge, France: JohnLibbey Eurotect, 1992, 89―97
Johnson D E, Austin B A, Murphy R I. Effects of high hydrostatic pressure on milk. Michwissenchaft, 1992, 47: 760―771
Barciszewski J, Jurczak J, Porowski S, Specht T, Erdmann V A. The role of water structurein conformational changes of nucleic acids in ambient and high pressureconditions. Eur J Biochem, 2002, 260: 293―307

doi: 10.1046/j.1432-1327.1999.00184.x
Tedford L A, Kelly S M, Price N C, Schaschke C J. Combined effects of thermal and pressure processing on food proteinstructure. Trans IchemE, 1998, 76: 80―85
Pervaiz S, Brew K. Homology of β-lactoglobulin serum retinol-bindingprotein and protein HC. Science, 1985, 228: 335―337

doi: 10.1126/science.2580349
Eigel W N, Butler J E, Ernstrom C A, Farrell H M Jr, Harwalkar V R, Jenness R, Whitney R M. Nomenclature of proteins of cow’s milk: fifth revision. J Dairy Sci, 1984, 67: 1599―1631
Godovac-Zimmermann J, Braunitzer G. Modern aspects of the primarystructure and function of β-lactoglobulin. Milchwissenschaft, 1987, 42: 294―298
Swaisgood H E. Chemistry of milk proteins. In: Fox P F, ed. Developmentsin Dairy Chemistry. Vol 1 Proteins. New York: Applied Science, 1982, 792―805
Swaisgood H E. Characteristics of edible fluids of animal origin: milk. In: Fennema O R, ed. Food Chemistry. New York: Marcel Dekker, 1985, 792―809
Kinsella J E. Milk proteins: physicochemical and functional properties. CRC Crit Rev Food Sci Nutr, 1984, 21: 197―213
Frapin D, Dufour E, Haertlé T. Probing the fatty acid bindingsite of β-lactoglobulin. J Protein Chem, 1993, 12: 443―449

doi: 10.1007/BF01025044
Yang J, Dunker A K, Powers J R, Clark S, Swanson B G. β-Lactoglobulin molten globule induced by high pressure. J Agric Food Chem, 2001, 49: 3236―3243

doi: 10.1021/jf001226o
Kataoka M, Kuwajima K, Tokunaga F, Goto Y. Structuralcharacterization of the molten globule of α-lactalbumin by solution X-ray scattering. Protein Sci, 1997, 6: 442―430
Kamatari Y O, Ohji S, Konno T, Seki Y, Soda K, Kataoka M, Akasaka K. The compact and expandeddenatured conformations of apomyoglobin in the methanol-water solvent. Protein Sci, 1999, 8: 873―882
Ramboarina S, Redfield C. Structural characterisationof the human α-lactalbuminmolten globule at high temperature. J MolBiol, 2003, 330: 1177―1188

doi: 10.1016/S0022-2836(03)00639-9
de Wit J N. Structure and functional behavior of whey proteins, Neth Milk Dairy J, 1981, 35: 47―57
Morr C V. Whey protein concentrates: an update. Food Technol, 1976, 30: 18―26
Rüegg M, Moor U, Blanc B. A calorimetric study of thermal denaturation of wheyprotein in simulated milk ultrafiltrate. J Dairy Res, 1977, 44: 509―521

doi: 10.1017/S002202990002046X
Johnson D E. High pressure effects on milk and meat. In: Ledward D A, Johnson D E, Earnshaw R G, Hasting A P M, eds. High Pressure Processingof Foods. Nottingham: Nottingham University Press, 1995, 99―107
Perez M D, Diaz de Villegas C, Sanchez L, Aranda P, Ena J M, Calvo M. Interacion of fatty acids with β-lactoglobulin and albumin from ruminant milk. J Biochem, 1989, 106: 1094―1097
Futterman S, Heller J. The enhancement of fluorescenceand the decreased susceptibility to enzymatic oxidation of retinalcomplexed with bovine-serum albumin, β-lactoglobulin and retinal binding protein of human plasma. J Biol Chem, 1972, 247: 5168―5172
Magdassi S, Vinetsky Y, Relkin P. Formation and structural heat stability of β-lactoglobulin/surfactant complexes. Colloids and Surfaces B: Biointerfaces. 1996, 6: 353―362

doi: 10.1016/0927-7765(96)01266-0
Guichard E, Langorieux S. Interactions between β-lactoglobulin and flavor compounds. Food Chem, 2000, 71: 301―308

doi: 10.1016/S0308-8146(00)00181-3
O’Neill T E, Kinsella J E. Binding of alkanone flavorsto β-lactoglobulin: Effectsof conformational and chemical modifications. J Agric Food Chem, 1987, 35: 770―774

doi: 10.1021/jf00077a030
Dufour E, Haertlé T. Alcohol-inducedchanges of β-lactoglobulin-retinol-bindingstoichiometry. Protein Eng, 1990, 4: 185―190

doi: 10.1093/protein/4.2.185
Wishnia A, Pinder T W J. Hydrophobic interactionsin proteins. The alkane binding sites of β-lactoglobulin A and B. Biochem, 1966, 5: 1534―1542

doi: 10.1021/bi00869a013
Sostamann K, Bernal B, Androit I, Guichard E. Flavorbinding by β―lactoglobulin:different approaches. In: Kruse R, ed. Flavor perception,aroma evaluation, 5th Warburg aroma symposium. Eisenach, 1997, 425―434
Reiners J, Nicklaus S, Guichard E. Interactions between β-lactoglobulin and flavor compounds of different chemical classes.Impact of the protein on the odor perception of vanillin and eugenol. LAIT, 2000, 80: 347―360

doi: 10.1051/lait:2000130
Nakamura T, Sado H, Syukunobe Y. Production of low antigenic whey protein hydrolysatesby enzymatic hydrolysis and denaturation with high pressure. Milchwissenschaft, 1993, 48: 141―145
Dumay E M, Kalichievski M T, Cheftel J C. High pressure unfolding and aggregation of β-lactoglobulin and baroprotective effectsof sucrose. J Agric Food Chem, 1994, 42: 1602―1605

doi: 10.1021/jf00045a006
Yang J, Powers J R, Clark S, Dunker A K, Swanson B G. Ligand and flavor bindingfunctional properties of β-lactoglobulin in the molten globule state induced by high pressure. J Food Sci, 2003, 68: 444―452

doi: 10.1111/j.1365-2621.2003.tb05692.x
Kuwajima K. Themolten globule state of α-lactalbumin. FASEB J, 1996, 10: 102―108
Kuwajima K, Mitani M, Sugai S. Characterization of the critical state in protein folding:effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of α-lactalbumin. J Mol Biol, 1989, 206: 547―561

doi: 10.1016/0022-2836(89)90500-7
Ptitsyn O B. Molten globule and protein folding. AdvProtein Chem, 1995, 47: 83―229

doi: 10.1016/S0065-3233(08)60546-X
Dolgikh D A, Gilmanshin R I, Brazhnikov E V, Bychkova V E, Semisotnov G V, Venyaminov S Y, Ptitsyn O B. α-Lactalbumin: compact statewith fluctuating tertiary structure. FEBSLetters, 1981, 136: 311―315

doi: 10.1016/0014-5793(81)80642-4
Kronman M J, Cerankowski L, Holmes L G. Inter- and intramolecular interactions of α-lactalbumin. III. Spectral changesat acid pH. Biochem, 1965, 4: 518―525

doi: 10.1021/bi00879a022
Kuwajima K, Nitta K, Yoneyama M, Sugai S. Three statedenaturation of α-lactalbuminby guanidine hydrochloride. J Mol Biol, 1976, 106: 359―373

doi: 10.1016/0022-2836(76)90091-7
Chang J Y, Bulychev A, Li L. A stabilized molten globule protein. FEBS Letters, 2000, 487: 298―300

doi: 10.1016/S0014-5793(00)02341-3
de Wit J N, Klarenbeek G. Effects of various heat treatmentson structure and solubility of whey proteins. J Dairy Sci, 1984, 67: 2701―2710
Jegouic M, Grinberg V Y, Guingant A, Haertlé T. Baricoligomerization in α-lactalbumin/β-lactoglobulin mixtures. J Agric Food Chem, 1997, 45: 19―22

doi: 10.1021/jf960232a
Considinea T, Patela H A, Anemaa S G, Singh H, Creamer L K. Interactions of milk proteinsduring heat and high hydrostatic pressure treatments — A review. Innov Food Sci & Emerg, 2006, 8: 1–23
Hayakawa I, Kajihara J, Morikawa K, Oda M, Fujio Y. Denaturation of bovine serum albumin(BSA) and ovalbumin by high pressure, heat and chemicals. J Food Sci, 1992, 57: 288―292

doi: 10.1111/j.1365-2621.1992.tb05478.x
Cheftel J C, Dumay E. Effects of high pressureon dairy proteins: a review. In: Hayashi R, Balny C, eds. High Pressure Bioscience and Biotechnology. Elsevier Science BV, 1996, 299―308

doi: 10.1016/S0921-0423(06)80050-X
Lopez-Fandino R, Carrascosa A V, Olano A. Effects of high pressure on whey protein denaturationand cheese-making properties of raw milk. Journal of Dairy Sci, 1996, 79: 929―936
Famelart M H, Chapron L, Piot M, Brule G, Durier C. High pressure-induced gel formation ofmilk and whey concentrates. J Food Eng, 1998, 36: 149―164

doi: 10.1016/S0260-8774(98)00048-X
Galazka V B, Ledward D A, Dickinson E, Langley K R. High pressure effects on emulsifying behavior of whey protein concentrate. J Food Sci, 1995, 60: 1341―1343

doi: 10.1111/j.1365-2621.1995.tb04587.x
Ìbanoglu E, Karatas S. High pressure effect on foamingbehavior of whey protein isolate. J FoodEng, 2001, 47: 31―36

doi: 10.1016/S0260-8774(00)00096-0
Liu X M, Powers J R, Swanson B G, Hill H, Clark S. Modification of whey protein concentratehydrophobicity by high hydrostatic pressure. Innov Food Sci Emerg, 2005, 6: 310―317

doi: 10.1016/j.ifset.2005.03.006
Liu X M, Powers J R, Swanson B G, Hill H, Clark S. High hydrostatic pressure affects flavor-bindingproperties of whey protein concentrate. J Food Sci, 2005, 70: 581―585
Lim S Y, Swanson B G, Clark S. High hydrostatic pressure modification of whey proteinconcentrate for improved functional properties. J Dairy Sci, 2008, 91: 1299―1307

doi: 10.3168/jds.2007-0390
Padiernos C A, Lim S Y, Swanson B G, Ross C F, Clark S. High hydrostatic pressure modificationof whey protein concentrate for use in low-fat whipping cream improvesfoaming properties. J Dairy Sci, 2009, 92: 3049―3056

doi: 10.3168/jds.2008-1997
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed