Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2009, Vol. 3 Issue (4) : 413-426    https://doi.org/10.1007/s11705-009-0254-x
Research articles
Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics
Pavan Kumar SOMA,Patrick D. WILLIAMS,Y. Martin LO,
Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
 Download: PDF(416 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Conventionally used in the food industry as stabilizing, thickening, gelling, and suspending or dispersing agents, non-starch polysaccharides such as xanthan gum are known to improve the texture of certain frozen products. Another polysaccharide that has received significant attention in recent years is chitosan, a natural biopolymer derived from chitin. In the wake of growing interest in finding ideal encapsulating agents for probiotics, non-starch polysaccharides have been investigated. Scattered research can be found on the effect of each individual polysaccharide, but there remains a void in the literature in terms of closely comparing the characteristics of non-starch polysaccharides for these applications, especially when more than one biopolymer is employed. A good understanding of the tools capable of elucidating the underlying mechanisms involved is essential in ushering further development of their applications. Therefore, it is this review’s intention to focus on the selection criteria of non-starch polysaccharides based on their rheological properties, resistance to harsh conditions, and ability to improve sensory quality. A variety of critical tools is also carefully examined with respect to the attainable information crucial to frozen food and microencapsulation applications.
Issue Date: 05 December 2009
 Cite this article:   
Patrick D. WILLIAMS,Pavan Kumar SOMA,Y. Martin LO. Advancements in non-starch polysaccharides research for frozen foods and microencapsulation of probiotics[J]. Front. Chem. Sci. Eng., 2009, 3(4): 413-426.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0254-x
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I4/413
Glicksman M. FoodHydrocolloids. Boca Raton: CRC Press, Inc. 1986, 3
Williams P A, Phillips G O. Handbook of Hydrocolloids. Boca Raton: CRC Press LLC, 2000, 1–19
Hoefler A C. Hydrocolloids. St. Paul: Eagan Press, 2004, 7–25
Mandala I G, Sawas T P, Kostaropoulos A E. Xanthan and locust bean gum influenceon the rheology and structure of a white model-sauce. J Food Eng, 2004, 64: 335–342

doi: 10.1016/j.jfoodeng.2003.10.018
Sikor M, Badrie N, Deisingh A K, Kowalski S. Saucesand dressings: a review of properties and applications. Critical Reviews in Food Science and Nutrition, 2008, 48: 50–77

doi: 10.1080/10408390601079934
Garti N, Leser N M. Emulsification propertiesof hydrocolloids. Polym Adv Technol, 2001, 12: 123–135

doi: 10.1002/1099-1581(200101/02)12:1/2<123::AID-PAT105>3.0.CO;2-0
Dickenson E. Hydrocolloidsas emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2008, 23: 1473–1482

doi: 10.1016/j.foodhyd.2008.08.005
Mikkonen K S, Tenkanen M, Cooke P, Xu C, Rita H, Willfo S, Holmbom B, Hicks K B, Yadav M P. Mannans asstabilizers of oil-in-water beverage emulsions. LWT-Food Sci Technol, 2009, 42: 849–855

doi: 10.1016/j.lwt.2008.11.010
Goud K, Desai H, Park H J. Recent developments in microencapsulation of food ingredients. Drying Technol, 2005, 23: 1361–1394

doi: 10.1081/DRT-200063478
Gouin S. Microencapsulation:industrial appraisal of existing technologies and trends. Trends Food Sci Technol, 2004, 15: 330–347

doi: 10.1016/j.tifs.2003.10.005
Freeland M. Formulationtips on Hydrocolloids. Prepared Foods, 2002, 171: 69
Goff H D. Gums and Stabilisers for the Food Industry 13. Williams P A, Phillips G O, eds. Cambridge: Royal Society of Chemistry. 2006, 403–412
Towle G A. Gums and Stabilisers for the Food Industry 8. Phillips G O, Williams P A, Wedlock D J, eds. New York: Oxford University Press,Inc., 1996, 79–87
Marshall R T, Goff H D, Hartel R W. Ice Cream. 6th ed. NewYork: Kluwer Academic/Plenum Publishers, 2003
Sworn G. Handbookof hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 103–115
Champion, S. Gumsand Stabilisers for the Food Industry 8. Phillips G O, Williams P A, Wedlock D J, eds. New York: Oxford University Press,Inc., 1996, 361–366
Imeson A P, Humphreys W. Thickening and gelling agentsfor food. Imeson A P, ed. Suffolk: St Edmunsbury Press, 1997, 180–197
Anal A K, Stevens W F. Chitosan-alginate multilayerbeads for controlled release of ampicillin. Int J Pharm, 2005, 290: 45–54

doi: 10.1016/j.ijpharm.2004.11.015
Gibbs B F, Kermasha S, Alli I, Mulligan C N. Encapsulation in the food industry: a review, Int J Food Sci Nutr, 1999, 50: 213–224

doi: 10.1080/096374899101256
Schrooyen P M M, Meer V D R, Kruif C G D. Microencapsulation: its application in nutrition. In: Proceedings of Nutrition Society. Cambridge: Cambridge University Press, 2001, 60: 475–479
Agullo E, Rodriguez M S, Ramos V, Albertengo L. Presentand future role of chitin and chitosan in food. Macromol Biosci, 2003, 3: 521–530

doi: 10.1002/mabi.200300010
Shahidi F, Kamil J, Arachichi V, Jeon Y J. Food applicationsof chitin and chitosans. Trends Food SciTechnol, 1999, 10: 37–51

doi: 10.1016/S0924-2244(99)00017-5
FAO/WHO Experts Report. Health and nutritional properties of probiotics in food includingpowder milk with live lactic acid bacteria. 2001
Dave R I, Shah N P. Viability of yoghurt andprobiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J, 1997, 7: 31–41

doi: 10.1016/S0958-6946(96)00046-5
Wielinga W C, Maehall A G. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 137–154
Goycoola F M, Morris E R, Gidley M. Viscosity of galactomannans at alkaline and neutral pH:evidence of ‘hyperentanglement” in solution. Carbohydr Polym, 1995, 27: 69–71

doi: 10.1016/0144-8617(95)00030-B
Sandolo C, Matricardi P, Alhaique F, Coviello T. Effectof temperature and cross-linking density on rheology of chemical cross-linkedguar gum at the gel point. Food Hydrocolloids, 2008, 23: 210–220

doi: 10.1016/j.foodhyd.2008.01.001
FDA. 1996. 21 CFR 172: Food additives permitted for direct addition to foodfor human consumption: Curdlan. FederalRegulations61, 65941–65942
Williams P D, Sadar L N, Lo Y M. Texture stability of hydrogel complex containing curdlangum over multiple freeze-thaw cycles. JFood Process Preserv, 2009, 33: 126–139

doi: 10.1111/j.1745-4549.2009.00364.x
Downey G. Qualitychanges in frozen and thawed, cooked pureed vegetables containinghydrocolloids, gums and dairy powders. Int J Food Sci Technol, 200237: 869–877
Ribotta P D, Pérez G T, León Añón. Effect of emulsifier and guar gum on micro structural,rheological and baking performance of frozen bread dough. Food Hydrocolloids, 2004, 18: 305–313

doi: 10.1016/S0268-005X(03)00086-9
Krishnaiah Y S R, Raju P V, Kumar B D, Bhaskar P, Satyanarayana V. Development of colon targeteddrug delivery systems for mebendazole. J Controlled Release, 2001, 77: 87–95

doi: 10.1016/S0168-3659(01)00461-8
Krishnaiah Y S R, Karthikeyan R S, Sankar V G, Satyanarayana V. Three-layerguar gum matrix tablet formulations for oral controlled delivery ofhighly soluble trimetazidine dihydrochloride. J Controlled Release, 2002, 81: 45–56

doi: 10.1016/S0168-3659(02)00031-7
Gliko-Kabir I, Yagen B, Baluom M, Rubinstein A. Phosphatedcrosslinked guar for colon-specific drug delivery II. In vitro andin vivo evaluation in the rat. J ControlledRelease, 2000, 63: 129–134

doi: 10.1016/S0168-3659(99)00180-7
Wong D, Larrabee S, Clifford K, Tremblay J, Friend D R. USP dissolution apparatusIII (Reciprocating Cylinder) for screening of guar-based colonic deliveryformulations. J Controlled Release, 1997, 47: 173–179

doi: 10.1016/S0168-3659(97)01633-7
Ding W K, Shah N P. Effect of various encapsulatingmaterials on the stability of probiotic bacteria. J Food Sci, 2009, 74(2): M100–M107

doi: 10.1111/j.1750-3841.2009.01067.x
Dea I C M, Morris E R, Rees D A, Welsh E J, Barnes H A, Price J. Associationsof like and unlike polysaccharides: mechanism and specificity in galactomannans,interacting bacterial polysaccharides, and related systems. Carbohydr Res, 1977, 57: 249–272

doi: 10.1016/S0008-6215(00)81935-7
Tanaka R, Hatakeyama T, Hatakeyama H. Formation of locust bean gum hydrogel by freezing-thawing. Polym Intern, 1998, 45: 118–126

doi: 10.1002/(SICI)1097-0126(199801)45:1<118::AID-PI908>3.0.CO;2-T
Lozinsky V I, Damshkaln L G, Brown R, Norton I T. Study of cryostructuring of polymer systems. XIX. On the nature ofintermolecular links in the cryogels of locust bean gum. Polym Int, 2000, 49: 1434–1443

doi: 10.1002/1097-0126(200011)49:11<1434::AID-PI525>3.0.CO;2-F
Lozinsky V I, Plieva F M, Galaev I Y, Mattiasson B. Thepotential of polymeric cryogels in bioseparation. Bioseperation, 2001, 10: 163–188

doi: 10.1023/A:1016386902611
Zeira A, Nussinovitch A. Mechanical Properties ofweak locust bean gum (LBG) Gels under controlled rapid freeze-thawing. Journal of Texture Studies, 2004, 34: 561–573

doi: 10.1111/j.1745-4603.2003.tb01081.x
Rocks J K. Xanthan gum. Food Technol, 1971, 25: 476–483
Wang F, Wang Y J, Sun Z. Conformational role of xanthan in its interaction withlocust bean gum. J Food Sci, 2002b, 67: 2609–2614

doi: 10.1111/j.1365-2621.2002.tb08786.x
Higiro J, Herald T J, Alavi S. Rheological study of xanthan and locust bean gum interactionin dilute solution. Food Res Int, 2006, 39: 165–175

doi: 10.1016/j.foodres.2005.07.011
Sharadanant R, Khan K. Effect of hydrophilic gumson frozen dough. I. Dough quality. CerealChem, 2003a, 80: 764–772

doi: 10.1094/CCHEM.2003.80.6.764
Sharadanant R, Khan K. Effect of hydrophilic gumson frozen dough. II. Bread characteristics.Cereal Chem, 2003b, 80: 773–780

doi: 10.1094/CCHEM.2003.80.6.773
Mandala I, Kapetanakou A, Kostaropoulos A. Physical properties of breads containing hydrocolloidsstored at low temperature. II. Effect offreezing. Food Hydrocolloids, 2008, 22: 1443–1451

doi: 10.1016/j.foodhyd.2007.09.003
Onsoyen E. Thickeningand Gelling Agents for Food. 2nd ed. Imeson A, ed. New York: Chapman & Hall, 1997, 22–44
Draget K I. Handbook of hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 379–397
Shon J, Yun Y, Shin M, Chin K B, Eun J B. Effects of milk protiens and gums onquality of bread made from frozen dough. J Sci Food Agric, 2009, 89: 1407–1415

doi: 10.1002/jsfa.3602
Lee J S, Cha D S, Park H J. Survival of freeze dried Lactobacillusbulgaricus KFRI 673 in chitosan coated calcium alginatemicroparticles. J Agric Food Chem, 2004, 52: 7300–7305

doi: 10.1021/jf040235k
Doleyres Y, Fliss I, Lacroix C. Increasesd stress tolerance of Bifidobacterium longum and Lactococcuslactis produced during continuous mixed strain immobilizedcell fermentation. J Appl Microbiol, 2004, 97: 527–539

doi: 10.1111/j.1365-2672.2004.02326.x
Ross G M, Gusils C, Gonzalez S N. Microencapsulation of probiotic strains for swine feeding. Biol Pharm Bull, 2008, 31(11): 2121–2125

doi: 10.1248/bpb.31.2121
Ding W K, Shah N P. An improved method of microencapsulationof probiotic bacteria for their stability in acidic and bile conditionsduring storage. J Food Sci, 2008, 74 (2): M53–M61

doi: 10.1111/j.1750-3841.2008.01030.x
Hansen L T, Allan-Wojtas P M, Jin Y L, Paulson A T. Survival of Ca-alginate microencapsulated bifidobacterium spp. inmilk and simulated gastrointestinal conditions. Food Microbiol, 2002, 19: 35–45

doi: 10.1006/fmic.2001.0452
Imeson A P. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 87–102
Fox J E. Thickening and gelling agents for foods. Imeson A, ed. New York: Chapman & Hall, 1997, 262–283
Tsen Z H, Lin Y P, Haung H Y, King V A E. Studieson the fermentation of tomato juice by using κ-carrageenan immobilized lactobacillus acidophilus. J Food Process Preserv, 2008, 32: 178–189

doi: 10.1111/j.1745-4549.2008.00191.x
Adhikari K, Mustapha A, Grun I U, Fernando A. Viabilityof microencapsulated bifidobacteria in set yogurt during refrigeratedstorage. J Dairy Sci, 2000, 83: 1946–1951
Audet P, Paquin C, Lacroix C. Effect of medium and temperature of storage on viabilityof lactic acid bacteria immobilized in κ-carrageenan-locust bean gum gel beads. Biotechnol Tech, 1991, 5(4): 307–312

doi: 10.1007/BF02438669
Harada T, Okuyama K, Konno A, Koreeda A, Harada A. Effect of heating on formationof curdlan gels. Carbohydr Polym, 1994, 24: 101–106.

doi: 10.1016/0144-8617(94)90018-3
Hirashima M, Takaya T, Nishinari K. DSC and rheological studies on aqueous dispersions ofcurdlan. Thermochim Acta, 1997, 306: 109–114

doi: 10.1016/S0040-6031(97)00310-9
Nakao Y. Propertiesand food applications of curdlan. Agro-Food-IndustryHi-Tech, January/February1997, 12–15
McIntosh M, Stone B A, Stanisich V A. Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol, 2005, 68: 163–173

doi: 10.1007/s00253-005-1959-5
Gagnon M A, Lafleur M. From curdlan powder to thetriple helix gel structure: an attenuated total reflection-infraredstudy of the gelation process. Appl Spectrosc, 2007, 61: 374–378

doi: 10.1366/000370207780466136
Tada T, Matsumoto T, Masuda T. Dynamic viscoelasticity and small-angle X-ray scatteringstudies on the gelation mechanism and network structure of curdlangels. Carbohydr, Polym, 1999, 39: 53–59

doi: 10.1016/S0144-8617(98)00157-X
Hatakeyama T, Ueda C, Hatakeyama H. Structural change of water by gelation of curdlan suspension. J Therm Anal Calorim, 2006, 85: 661–668

doi: 10.1007/s10973-006-7641-z
Pederson J. Polysaccharidesin Food. Blanshard J M V, Mitchell J R, ed. London: Butterworths, 1979, 219–227
Harada T, Masada M, Fujimari K, Maeda I. Productionof a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3. Agric Biol Chem, 1966, 30: 196–19
Saito H, Miyata E, Sasaki Y. A 13C nuclear magnetic resonancestudy of gel-forming (1→3)-β-Dglucans: molecular-weight dependence of helical conformation andof the presence of junction zones for association of primary molecules. Macromolecules, 1978, 11: 1244–1251

doi: 10.1021/ma60066a035
Marchessault R H, Deslandes Y. Fine structure of (1→3)-β-D-glucans: curdlan and paramylon. Carbohydr Res, 1978, 75: 231–242

doi: 10.1016/S0008-6215(00)84642-X
Nakao Y, Konno A, Taguchi T, Tawada T, Kasai H, Toda J, Terasaki M. Curdlan:Properties and application to foods. JFood Sci, 1991, 56: 769–772

doi: 10.1111/j.1365-2621.1991.tb05378.x
Jezequal V. Curdlan:a new functional beta-glucan. Cereal FoodsWorld, 1998, 43: 361–364
Kanzawa Y, Harada T, Koreeda A, Harada A. Curdlangel formed by neutralizing its alkaline solution. Agric Biol Chem, 1987, 51: 1839–1843
Sanderson G R. Gums and their use in food systems. FoodTechnol, 1996, 50: 81–84
Harada T, Harada A. Polysaccharides in MedicalApplications. Dumitriu S, ed. Boca Raton: CRC Press, 1996, 21–58
Na K, Park K H, Kim S W, Bae Y H. Self-assembledhydrogel nanoparticles from curdlan derivatives: characterization,anti-cancer drug release and interaction with a hepatoma cell line(HepG2). J Controlled Release, 2000, 69: 225–236

doi: 10.1016/S0168-3659(00)00256-X
Lopes D, Silva J A, Rao M A, Fu J T. 1998. Phase/StateTransitions in Foods. Rao M A, Hartel R W, eds. New York: Marcel Dekker, Inc., 1998, 111–157
Funami M F, Yada H, Nakao Y. Rheological and thermal studies on gelling characteristicsof curdlan. Food Hydrocolloids, 1999, 13: 317–324

doi: 10.1016/S0268-005X(99)00014-4
Sadar L N. Rheological and textural characteristics of copolymerized hydrocolloidalsolutions containing curdlan gum. Dissertationfor the Masters Degree. Maryland: University of Maryland, 2004
Nishinari H Z. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 269–286
Hsu S Y, Chung H Y. Interactions of konjac, agar,curdlan gum, κ-carrageenan and reheating treatment in emulsifiedmeatballs. J Food Eng, 2000, 44: 199–204

doi: 10.1016/S0260-8774(00)00026-1
Lo C T, Ramsden L. Effects of xanthan and galactomannanon the freeze/thaw properties of starch gels. Nahrung, 2000, 44: 211–214

doi: 10.1002/1521-3803(20000501)44:3<211::AID-FOOD211>3.0.CO;2-O
Lee M H, Baek M H, Cha D S, Park H J, Lim S T. Freeze-thaw stabilization of sweet potatostarch gel by polysaccharide gums. FoodHydrocolloids, 2002, 16: 345–352

doi: 10.1016/S0268-005X(01)00107-2
Lo Y M, Robbins K L, Argin-Soysal S, Sadar L N. Viscoelasticeffects on the diffusion properties of curdlan gels. J Food Sci, 2003, 68: 2057–2063

doi: 10.1111/j.1365-2621.2003.tb07018.x
Whitcomb P J, Macosko C W. Rheology of Xanthan Gum. J Rheol, 1978, 22: 493–505

doi: 10.1122/1.549485
Wang F, Wang Y J, Sun Z. Conformational role of xanthan in its interaction withguar gum. J Food Sci, 2002a, 67: 3289–3

doi: 10.1111/j.1365-2621.2002.tb09580.x
Pai V, Srinivasarao M, Khan S A. Evolution of microstructure and rheology in mixed polysaccharidesystems. Macromolecules, 2002, 35: 1699–1707

doi: 10.1021/ma0115545
Richter S, Boyko V, Matzker R, Schröter K. Athermoreversible gelling system: mixtures of xanthan gum and locust-beangum. Macromol Rapid Commun, 2004, 25: 1504–1509

doi: 10.1002/marc.200400214
Kim B, Takemasa M, Nishinari K. Synergistic interaction of xyloglucan and xanthan investigatedby rheology, differential scanning calorimetry, and NMR. Biomacromolecules, 2006, 7: 1223–1230

doi: 10.1021/bm050734+
Paradossi G, Chiessi E, Barbiroli A, Fessas D. Xanthanand glucomannan mixtures: synergistic interactions and gelation. Biomacromolecules, 2002, 3: 498–504

doi: 10.1021/bm010163v
Makri E A, Doxastakis G I. Study of emulsions stabilizedwith phaseolus vulgaris or phaseolus coocineus with the addition ofArabic gum, locust bean gum and xanthan gum. Food Hydrocolloids, 2006, 20: 1141–1152

doi: 10.1016/j.foodhyd.2005.12.008
Chaisawang M, Suphantharika M. Pasting and rheological propertiesof native and anionic tapioca starches as modified by guar gum andxanthan gum. Food Hydrocolloids, 2006, 20: 641–649

doi: 10.1016/j.foodhyd.2005.06.003
Giannouli P, Morris E R. Cryogelation of xanthan. Food Hydrocolloids, 2003, 17: 495–501

doi: 10.1016/S0268-005X(03)00019-5
Mandala I G. Physical properties of fresh and frozen stored, microwaved-reheatedbreads, containing hydrocolloids. J FoodEng, 2005, 66: 291–300

doi: 10.1016/j.jfoodeng.2004.03.020
Matuda T G, Chevallier S, Filho P A P, LeBail A, Tadini C C. Impact of guar and xanthangums on proofing and calorimetric parameters of frozen bread dough. J Cereal Sci, 2008, 48: 741–746

doi: 10.1016/j.jcs.2008.04.006
Wenrong S, Griffiths M W. Survival of bifidobacteriain yogurt and simulated gastric juice following immobilization ingellan-xanthan beads. Int J Food Microbiol, 2000, 61: 17–25

doi: 10.1016/S0168-1605(00)00327-5
Elcin Y M. Encapsulation of urease enzyme in xanthan-alginate spheres. Biomater, 1995, 16: 1157–1161

doi: 10.1016/0142-9612(95)93580-7
Dumitriu S, Chornet E. Immobilization of xylanasein chitosan-xanthan hydrogels. BiotechnolProg, 1997, 13: 539–545

doi: 10.1021/bp970059i
Soma P K, Lo Y M. Characterization of the diffusionalproperties of polyelectrolyte complex gel formed by xanthan and chitosan. In: Institute of Food Technologists, Annual Meetingand Food Expo Abstract Book, 2009
Granz A J. Cellulose Hydrocolloids. In: Food Colloids.Graham H, ed. Westport: The AVI Publishing Company,Inc., 1977, 382–417
Murray J C F. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 219–229
Yaşar F, Toğrul H, Arslan N. Flow properties of cellulose and carboxymethyl cellulosefrom orange peel. J Food Eng, 2007, 81: 187–199

doi: 10.1016/j.jfoodeng.2006.10.022
Iijima H, Takeo K. Handbook of Hydrocolloids. Phillips G O, Williams P A, eds. Boca Raton: CRC Press LLC, 2000, 331–346
Ghaouth E A, Arul J, Asselin A, Benhamou N. Antifungalactivity of chitosan on post harvest pathogens: induction of morphologicaland cytological alterations an rhizopus stolonifer. Mycol Res, 1992, 96: 769–779

doi: 10.1016/S0953-7562(09)80447-4
Jeuniaux C. Chitinin Nature and Technology. Muzzarelli R A A, Jeuniaux C, Gooday G W eds. New York: Plenum Press, 1986, 551–570
Soto-Perlata N V, Muller H, Knorr D. Effect of chitosan treatments on the clarity and colorof apple juice. J Food Sci, 1989, 54: 495–496

doi: 10.1111/j.1365-2621.1989.tb03119.x
Kumar R M N V, Muzzarelli R A A, Muzzarelli C, Sashiwa H, Domb A J. Chitosan chemistry and pharmaceuticalperspectives. Chem Rev, 2004, 104: 6017–6084

doi: 10.1021/cr030441b
Shahidi F, Abuzaytoun A. Applications of chitin andchitosan and their oligomers: Taylor, S. L. Adv Food Nutr Res, 2005, 49: 114–128
Sathivel S, Liu Q, Huang J, Prinyawiwatkul W. The influence of chitosan glazing onquality of skinless pink salmon (Oncorhynchusgorbuscha) fillets during frozen storage. J Food Eng, 2007, 83: 366–373

doi: 10.1016/j.jfoodeng.2007.03.009
Han C, Zhao Y, Leonard S W, Traber. Edible coatings to improved storability and enhancenutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol, 2004, 33: 67–78

doi: 10.1016/j.postharvbio.2004.01.008
Williams P A, Langdon M J. The influence of locust beangum and dextran on the gelation of kappa-carrageenan. Biopolymers, 1996, 38: 655–664

doi: 10.1002/(SICI)1097-0282(199605)38:5<655::AID-BIP9>3.0.CO;2-R
Ikeda S, Nitta Y, Kim B S, Temsiripong T, Pongsawatmanit R, Nishinari K. Single-phase mixed gels of xyloglucan and gellan. Food Hydrocolloids, 2004, 18: 669–675

doi: 10.1016/j.foodhyd.2003.11.005
Richter S, Brand T, Berger S. Comparative monitoring of the gelation process of a thermoreversiblegelling system made of xanthan gum and locust bean gum by dynamiclight scattering and 1H NMR Spectroscopy. Macromol Rapid Commun, 2005, 26: 548–553

doi: 10.1002/marc.200400631
Rodd A B, Dunstan D E, Boger D V, Schmidt J, Burchard W. Heterodyne and nonergodicapproach to dynamic light scattering of polymer gels: aqueous xanthanin the presence of metal ions (aluminum (III)). Macromolecules, 2001, 34: 3339–3352

doi: 10.1021/ma001706g
Sanchez C, Zuniga-Lopez R, Schmitt C, Despond S, Hardy J. Microstructure of acid-inducedskim milk-locust bean gum-xanthan gels. Int Dairy J, 2000, 10: 199–212

doi: 10.1016/S0958-6946(00)00030-3
Fernández P P, Martino M N, Zaritzky N E, Guignon B, Sanz P D. Effects of locust bean, xanthanand guar gums on the ice crystals of sucrose solution frozen at highpressure. Food Hydrocolloids, 2007, 21: 507–515

doi: 10.1016/j.foodhyd.2006.05.010
Pinotti A, Garcia M A, Martino M N, Zaritzky N E. Study on microstructure and physical properties of composite filmsbased on chitosan and methylcellulose. Food Hydrocolloids, 2007, 21: 66–72

doi: 10.1016/j.foodhyd.2006.02.001
Dunstan D E, Chen Y, Liao M L, Salvatore R, Boger D V, Prica M. Structure Rheology of the ĸ-carrageenan/locustbean gum gels. Food Hydrocolloids, 2001, 15: 475–484

doi: 10.1016/S0268-005X(01)00054-6
MacArtain P, Jacquier J C, Dawson K A. Physical characteristics of calcium induced kappa- carrageenannetworks. Carbohydr Polym, 2003, 53: 395–400

doi: 10.1016/S0144-8617(03)00120-6
Medina-Torres L, Brito-De La Fuente E, Gómez-Aldapa C A, Aragon-Piña A, Toro-Vazquez J F. Structural characteristics of gels formed by mixtures of carrageenanand mucilage gum from Opuntia ficus indica. Carbohydr Polym, 2006, 63: 299–309

doi: 10.1016/j.carbpol.2005.04.022
Rao V S R, Qasba P K, Balaji P V, Chandrasekaran R. Conformationof carbohydrates. Amsterdam: Overseas PublishersAssociation, 1998, 29
Martin D R, Ablett S, Darke A, Sutton R L, Sahagian M. Diffusion of aqueous sugarsolutions as affected by locust bean gum studied by NMR. J Food Sci, 1999, 64: 46–49

doi: 10.1111/j.1365-2621.1999.tb09858.x
Hatakeyama T, Hatakeyama H. Glasser W G, Hatakeyama H, eds. In: Viscoelasticity and Biomaterials, ACS Symp, 1992, 329

doi: 10.1021/bk-1992-0489.ch022
Hofmann K, Hatakeyama H. 1H NMR relaxation studies and lineshape analysis of aqueous sodiumcarboxymethylcellulose. Polymers, 1994, 35: 2749–2758

doi: 10.1016/0032-3861(94)90303-4
Ramakrishnan S, Gerardin C, Prud'homme R K. Syneresis of carrageenan gels: NMR and rheology. Soft Materials, 2004, 2: 145–153

doi: 10.1081/SMTS-200056119
Takigami S, Shimada M, Williams P A, Phillips G O. ESR study of the conformation transition of spin-labeled xanthangum in aqueous solution. Int J Biol, Macromol, 1993, 15: 367–371

doi: 10.1016/0141-8130(93)90055-Q
Jin Y, Zhang H B, Yin Y M, Nishinari K. Comparisonof curdlan and its carboxymethylated derivative by means of rheology,DSC, and AFM. Carbohydr Res, 2006, 341: 90–99

doi: 10.1016/j.carres.2005.11.003
Annable P, Williams P A, Nishinari K. Interaction in xanthan-glucomannan mixtures and the influenceof electrolyte. Macromolecules, 1994, 27: 4204–4211

doi: 10.1021/ma00093a023
Vittadini E, Dickinson L C, Chinachoti P. NMR water mobility in xanthan and locust bean gum mixtures:possible explanation of microbial response. Carbohydr Polym, 2002, 49: 261–269

doi: 10.1016/S0144-8617(01)00330-7
Coviello T, Burchard W. Criteria for the point ofgelation in reversibly gelling systems according to dynamic light-scatteringand oscillatory rheology. Macromolecules, 1992, 25: 1011–1012

doi: 10.1021/ma00028a082
Kanzawa Y, Koreeda A, Harada A, Harada T. Electronmicroscopy of the gel-forming ability of polysaccharide food additives. Agric Biol Chem, 1989, 53: 979–986
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed