Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (2) : 238-244    https://doi.org/10.1007/s11705-010-0002-2
RESEARCH ARTICLE
Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis
Lingchong WANG1,2, Hao WU1,2(), Nian CHANG1, Kun ZHANG1
1. College of Pharmaceutical Science, Nanjing University of Chinese Medicine, Nanjing 210046, China; 2. Research Center of Marine Drug in Jiangsu Province, Nanjing 210046, China
 Download: PDF(270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Total macromolecule extract was obtained from the soft body of Mactra veneriformis by the coupling techniques of decoction and alcohol precipitation. The extract was deproteinized with an ion exchange column, and resulted in the purifying of the crude polysaccharide fraction. It was found by chemical analysis that the crude polysaccharide part is composed of abundant polysaccharides (>95%) and few proteins (<1%). Furthermore, only one type of monosaccharide, glucose, was detected from its hydrolytes by thin-layer chromatography, indicating that the polysaccharides might be analogs of glucosan. The anti-hyperglycemia effects of the crude polysaccharide part were preliminarily investigated using several pharmacological methods in normal and diabetic mice. Animal experimental results showed that the crude polysaccharide fraction exhibited proper glycemia inhibition activity, and 300 mg/kg-weight dose has the optimal effect among all the studied doses. It is concluded that the crude polysaccharide fraction can be explored as a novel health product that possesses potential as an anti-hyperglycemic agent.

Keywords anti-hyperglycemia      Mactra veneriformis      polysaccharide      monosaccharide composition      oral glucose tolerance test     
Corresponding Author(s): WU Hao,Email:whao5795@yahoo.com.cn   
Issue Date: 05 June 2011
 Cite this article:   
Lingchong WANG,Hao WU,Nian CHANG, et al. Anti-hyperglycemic effect of the polysaccharide fraction isolated from mactra veneriformis[J]. Front Chem Sci Eng, 2011, 5(2): 238-244.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-0002-2
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I2/238
Fig.1  The composition of polysaccharide and protein in TMEM and CPPM
sampleselemental composition /%special groups /%
CHNsulfonic aciduronic acidamine
TMEM35.75.73.82.285.12-
CPPM38.26.82.12.196.910.60
Tab.1  The element composition and special group content of TMEM and CPPM
Fig.2  FTIR spectrum of TMEM and CPPM
Fig.3  1 arabinose; 2 galactosamine; 3 galactose; 4 glucose; 5 acid-hydrolyzed sample of TMEM; 6 acid-hydrolyzed sample of CPPM; 7 glucosamine; 8 ribose; 9 mannose; 10 xylose; 11 rhamnose
TLC image of acid-hydrolyzed CPPM and standards for monosaccharide analysis
groupdosageplasma glucose level (mmol·L-1) at time (min) after administration
60 min180 min
blank controlsaline, 15 mL/kg23.36±3.1921.59±1.72
positive controlmetformin, 150 mg/kg16.88±2.57a)10.21±4.50 a)
CPPM-LCPPM, 150 mg/kg22.93±5.9315.32±3.18 b)
CPPM-MCPPM, 300 mg/kg23.17±3.6612.15±2.35 a)
CPPM-HCPPM, 450 mg/kg20.25±6.1117.53±4.87b)
Tab.2  Effect of CPPM on plasma glucose levels of fasting alloxan-diabetic mice
Fig.4  Effect of CPPM on plasma glucose level in alloxan-diabetic mice. A single intragastric dosage (300 mg/kg-weight). * indicates <0.05 in comparison with blank control
Fig.5  Effect of the CPPM at different doses on the oral glucose tolerance tests in (a) normal and (b) alloxan-diabetic mice. * indicates <0.05 in comparison with blank control
1 Harris M I, Hadden W C, Knowler W C, Bennett P H. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in US population aged 20-74 yrDiabetes , 1987, 36(4): 523–534
doi: 10.2337/diabetes.36.4.523
2 Stern M P. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes , 1995, 44(4): 369–374
doi: 10.2337/diabetes.44.4.369
3 Pan X R, Yang W Y, Li G W, Liu J, Prevalence of diabetes and its risk factors in China, 1994. Diabetes Care , 1997, 20(11): 1664–1669
doi: 10.2337/diacare.20.11.1664
4 Blunt J W, Copp B R, Hu W P, Munro M H G, Northcote P T, Prinsep M R. Marine natural products. Natural Product Reports , 2009, 26(2): 170–244
doi: 10.1039/b805113p
5 Chang N, Wu H, Wang L, Yao J, Jing Y. Hypoglycemic effect of Mactra Veneriformis extraction. Journal of Nanjing TCM University , 2009, 25(4): 277–280 (in Chinese)
6 Adlam C, Knights J M, Mugridge A, Lindon J C, Baker P R, Beesley J E, Spacey B, Craig G R, Nagy L K. Purification, characterization and immunological properties of the serotype-specific capsular polysaccharide of Pasteurella haemolytica (serotype A1) organisms. J Gen Microbiol , 1984, 130(9): 2415–2426
7 Walker J M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol , 1994, 32: 5–8
8 Houff W H, Christie D R, Beaumont R H. Analysis of aromatic sulfonation reaction mixtures. Analytical Chemistry , 1957, 29(12): 1866–1868
doi: 10.1021/ac60132a008
9 Slodki M E, Wickerham L J. Extracellular polysaccharides and classification of the genus Lipomyces. J Gen Microbiol , 1966, 42(3): 381–385
10 Chen G C, Johnson B R. Improved colorimetric determination of cell wall chitin in wood decay fungi. Appl Environ Microbiol , 1983, 46(1): 13–16
11 Ajabnoor M A. Effect of aloes on blood glucose levels in normal and alloxan diabetic mice. Journal of Ethnopharmacology , 1990, 28(2): 215–220
doi: 10.1016/0378-8741(90)90031-N
12 Senso A, Franco P, Oliveros L, Minguillón C A. Characterization of doubly substituted polysaccharide derivatives. Carbohydrate Research , 2000, 329(2): 367–376
doi: 10.1016/S0008-6215(00)00182-8
13 Turgeona S L, Schmittb C, Sanchezc C. Protein-polysaccharide complexes and coacervates. Curr Opin Colloid In , 2007, 12(4-5): 166–178
doi: 10.1016/j.cocis.2007.07.007
14 Melo M R S, Feitosa J P A, Freitasa A L P, de Paula R C M. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers , 2002, 49(4): 491–498
doi: 10.1016/S0144-8617(02)00006-1
15 Bankir L, Bardoux P, Ahloulay M. Vasopressin and diabetes mellitus. Nephron , 2001, 87(1): 8–18
doi: 10.1159/000045879
16 McDonald G W, Fisher G F, Burnham C. Reproducibility of the oral glucose tolerance test. Diabetes , 1965, 14: 473–480
[1] SHI Huangying, CHEN Wenjuan, ZHANG Liming. Synthesis and thermosensitive behavior of dextran graft copolymers containing poly (N-vinylcaprolactam) side chains[J]. Front. Chem. Sci. Eng., 2007, 1(1): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed