Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 163-173    https://doi.org/10.1007/s11705-012-1283-4
RESEARCH ARTICLE
Screening of potential aquatic probiotics from the major microflora of guppies (Poecilia reticulata)
Aparna BALAKRISHNA, T. R. KEERTHI()
School of Biosciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam-686560, India
 Download: PDF(306 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fish (Poecilia reticulata) was used as the source for probiotics. 46 bacterial isolates were obtained from the skin, gills, guts and intestines of the guppy, Poecilia reticulata (collected from a government model fish farm in Kottayam, India). Of the above isolated strains, four isolates were selected based on their inhibitory spectrum against five indicator strains, Aeromonas hydrophila 1739, Vibrio cholerae 3906, Flavobacterium 2495, Acinetobacter 1271 and Alcaligenes 1424 (standard cultures collected from Microbial Type Culture Collection (MTCC) Chandigarh, India). Among the resulting isolates, two were gram-positive cocci, namely MBTU-PB2 and MBTU-PB3 and belong to the genus Staphylococcus. The other two were gram-negative rods, namely MBTU-PB1 and MBTU-PB4, of the genera Enterobacter and Acinetobacter, respectively. The basic probiotic characteristics of these isolates such as the production of bacteriocin like inhibitory substances (BLIS), antibiotic sensitivities and growth profiles were also determined. The above four isolated strains exhibited different antagonisms than the five indicator strains. During incubation, the antibacterial activity gradually increased in the inhibition zone and was influenced by the lag period (λ) and doubling time. The lag periods for most of the four selected strains were shorter than those of the indicator strains and the isolates had different growth rates (μ) than the indicator strains. All four isolates produced BLIS, however, the strains had different BLIS activities against the indicator strains. Treatment of the neutralized cell free supernatants of the selected isolates with proteases eliminated or reduced the BLIS activity, suggesting a proteinaceous nature of the inhibitory compounds. Further, the optimum BLIS activity was observed at neutral pH after 18 h of incubation. The antibiotic sensitivity assay revealed that the isolates were susceptible to routinely used antibiotics, whereas the plasmid profiles showed that the plasmids had no role in the antagonistic properties of the four isolated strains. The results showed that the isolates could be a promising source for biocontrol agents in aquacultures.

Keywords aquaculture      normal flora      immunomodulatory effect      probiotic      antagonistic principle      bacteriocin like inhibitory substances     
Corresponding Author(s): KEERTHI T. R.,Email:keerthisureshbabu@gmail.com   
Issue Date: 05 June 2012
 Cite this article:   
Aparna BALAKRISHNA,T. R. KEERTHI. Screening of potential aquatic probiotics from the major microflora of guppies (Poecilia reticulata)[J]. Front Chem Sci Eng, 2012, 6(2): 163-173.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1283-4
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/163
Bacterial isolateAntagonistic activityBacteriocin productionAntibiotic sensitivity test
VibrioFlavoA.hydrophilaAlacliAcinetoVibrioFlavoA.hydrophilaAlacliAcinetoPen.Ery.Gent.Chlo.Amp.Cipro.
MBTU-PB1++++++-++-RRSSRS
MBTU-PB2+ ++ + ++ + ++ + ++ + ++ + ++ + ++ + ++ + ++ + +SSSSSS
MBTU-PB3+ ++ ++ ++ ++-+ ++ +++SSSSSS
MBTU-PB4+++ +++ +++ ++ +++ +RRSSRS
Tab.1  Comparative study of isolated bacterial strains
Isolated strainIndicator strainsIncubation time
6 h12 h18 h24 h30 h36 h
MBTU-PB1V. cholera--+ ++ + + +
Flavobacterium++++ + - -
A. hydrophila-+++ + +
Alcaligenes- +++ + +
Acinetobacter---+ + +
MBTU-PB2V. cholera- ++ + + + +
Flavobacterium+ + ++ + + + + + + + + + + +
A. hydrophila- + ++ + + + + + + + +
Alcaligenes+ ++ + + + + + +
Acinetobacter- ++ + + + + + + +
MBTU-PB3V. cholera+ + - - -
Flavobacterium- ++ + + + + + +
A. hydrophila-- + + + + + + + + + +
Alcaligenes++ + + + + +
Acinetobacter++ + + + + + + + + +
MBTU-PB4V. cholera-- + + + + + + + +
Flavobacterium-- + + + + + + + +
A. hydrophila-+ + + + + + +
Alcaligenes-+ + + + +
Acinetobacter-- + + + + + +
Tab.2  Antagonistic activity of the bacterial strain isolated from guppy against indicator strains and
Isolated strainTime of thermal treatmentTemperature/°CIndicator strains
VibrioFlavoA. hydrophilaAlacliAcineto
MBTU-PB1Control a)18b)22161012
30 min60171014-c)-
80-----
60 min60141814--
80-----
MBTU-PB2Control2018161212
30 min601824141010
80-----
60 min60101214--
80-----
MBTU-PB3Control1714181210
30 min601712191210
80-----
60 min60101214--
80-----
MBTU-PB4Control2018191212
30 min60181914-10
80-----
60 min6016161214-
80-----
Tab.3  Effect of thermal treatments on cell free supernatant activity of the isolated strains against different indicator microorganisms
Fig.1  BLIS activity of MBTU-PB1, MBTU-PB2, MBTU-PB3 and MBTU-PB4 against (a), (b), (c), and (d) at neutral pH
Isolated strainEnzymeIndicator strain
V. choleraFlavobacteriumA. hydrophilaAlcaligenesAcinetobacte
MBTU-PB1Amaylase+++--
Trypsin+---+
Lysozyme++-+-
ProteinaseK-----
MBTU-PB2Amaylase+-+--
Trypsin+--+-
Lysozyme++--+
ProteinaseK-----
MBTU-PB3Amaylase+----
Trypsin-----
Lysozyme+++-+
ProteinaseK-----
MBTU-PB4Amaylase++-++
Trypsin+----
Lysozyme+++--
ProteinaseK-----
Tab.4  Effect of enzyme treatments on cell free supernatant activity of the isolated strains against different indicator microorganisms
Isolated strainIndicator strainSolvent
C1C2C3C4C5C6C7C8
MBTU-PB1V. cholera+-------
Flavobacterium--------
A. hydrophila--------
Alcaligenes+-+-+---
Acinetobacter--------
MBTU-PB2V. cholera--------
Flavobacterium-+-+----
A. hydrophila--+-----
Alcaligenes+-------
Acinetobacter--------
MBTU-PB3V. cholera--------
Flavobacterium---+----
A. hydrophila+++-+---
Alcaligenes--------
Acinetobacter--------
MBTU-PB4V. cholera+-------
Flavobacterium-+------
A. hydrophila+-+++---
Alcaligenes-+------
Acinetobacter--------
Tab.5  Effect of organic solvent treatments on cell free supernatant activity of the isolated strain against different indicator microorganisms
Fig.2  Plasmid DNA profile of the isolated bacterial strains.
M: Lambda DNAR Id III Double Digest; PB1: MBTU-PB1; PB2: MBTU-PB2; PB3: MBTU-PB3; PB4: MBTU-PB4
IsolateModelModel parametertdr2F valueRI
Aμλ
MBTU-PB1Gompertz1.6040.1533.6674.5300.9902792.306.019
MBTU-PB2Gompertz1.7320.1031.7306.7290.9945599.798.590
MBTU-PB3Logistic1.4630.1515.3534.5900.9979018.734.069
MBTU-PB4Gompertz1.7500.1353.3295.1340.9955634.985.851
V. choleraLogistic2.0320.0844.5598.2510.9912695.522.658
FlavobacteriumGompertz1.8910.1478.5334.7150.9977255.532.485
A. hydrophilaLogistic1.9630.1154.0616.0270.9902335.694.085
AlcaligenesLogistic1.9790.18211.3093.8020.9911884.172.322
AcinetobacterGompertz1.8750.1837.5233.7870.9966273.273.851
Tab.6  Growth Profile
Fig.3  Growth profile for bacterial isolates (a) MBTU-PB3 and (b) MBTU-PB2
1 Maeda M, Liao I C. Microbial processes in aquaculture environment and their importance for increasing crustacean production. Japan Agricultural Research Quarterly , 1994, 28: 283–288
2 Cannell R J P, Owsianka A M, Walker J M. Results of a large scale screening programme to detect antibacterial activity from fresh water algae. British Phycological Journal , 1988, 23(1): 41–44
doi: 10.1080/00071618800650051
3 Grisez L, Ollevier F. Vibrio (Listonella) Anguillarum Infection in Marine Fish Larviculture. In: Lavens P, Jaspers E, Roelands I, eds. Larvi’91–Fish and Crustacean Larviculture Symposium. European Aquaculture Society, Gent , 1995, 24: 497
4 Hansen G H, Olafsen J A. Bacterial interactions in early life stages of marine cold water fish. Microbial Ecology , 1999, 38(1): 1–26
doi: 10.1007/s002489900158 pmid:10384006
5 Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews , 2000, 64(4): 655–671
doi: 10.1128/MMBR.64.4.655-671.2000 pmid:11104813
6 Schwarz S, Kehrenberg C, Walsh T R. Use of antimicrobial agents in veterinary medicine and food animal production. International Journal of Antimicrobial Agents , 2001, 17(6): 431–437
doi: 10.1016/S0924-8579(01)00297-7 pmid:11397611
7 Akinbowale O L, Peng H, Barton M D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology , 2006, 100(5): 1103–1113
doi: 10.1111/j.1365-2672.2006.02812.x pmid:16630011
8 Moriarty D J W. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture (Amsterdam, Netherlands) , 1998, 164(1–4): 351–358
doi: 10.1016/S0044-8486(98)00199-9
9 Vine N G, Leukes W D, Kaiser H. In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiology Letters , 2004, 231(1): 145–152
doi: 10.1016/S0378-1097(03)00954-6 pmid:14769479
10 Fuller R. History and Development of Probiotics. In: Fuller R, ed. Probiotics: The Scientific Basis . London: Chapman and Hall, 1992, 1–8
11 Austin B, Stuckey L F, Robertson P A W, Effendi I, Griffith D R W. A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. Journal of Fish Diseases , 1995, 18(1): 93–96
doi: 10.1111/j.1365-2761.1995.tb01271.x
12 Moriarty D J W. Diseases Control in Shrimp Aquaculture with Probiotic Bacteria. In: Bell C R, Brylinsky M, Johnson-Green P, eds. Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada , 1999, 237–243
13 Atlas R M, Bartha E. Microbial Ecology Fundamentals and Application. Menlo Park: Benjamin Cummings Science Publishing , 1997
14 Gould G. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. Journal of Food Protection , 1996, 59: S82–S86
15 McAuliffe O, Ross R P, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews , 2001, 25(3): 285–308
doi: 10.1111/j.1574-6976.2001.tb00579.x pmid:11348686
16 Tagg J R, Dajani A S, Wannamaker L W. Bacteriocins of gram-positive bacteria. Bacteriological Reviews , 1976, 40(3): 722–756
pmid:791239
17 Riley M A, Wertz J E. Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology , 2002, 56(1): 117–137
doi: 10.1146/annurev.micro.56.012302.161024 pmid:12142491
18 Dopazo C P, Lemos M L, Lodeiros C, Bolinches J, Barja J L, Toranzo A E. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. Journal of Applied Bacteriology , 1988, 65(2): 97–101
doi: 10.1111/j.1365-2672.1988.tb01497.x pmid:3204073
19 Anne J A, Praseeja R J, Keerthi T R. Evaluation of probiotic potential of lactic acid bacteria isolated from infant feces and the study of its effect on the enteric fever pathogens— Salmonella typhi and Salmonella paratyphi A. International Journal of Chemical Science , 2010, 8(5): S376– S387
20 Maniatis T, Fritsch E F, Sambrook J. Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbour Laboratory, Cold Spring Harbour , 1982
21 Trevors J T. Plasmid curing in bacteria. FEMS Microbiology Letters , 1986, 32(3–4): 149–157
doi: 10.1111/j.1574-6968.1986.tb01189.x
22 Zar J H. Biostatical Analysis. New Jersey: Prentice-Hall, Englewood Cliffs , 1984, 2: 718
23 Zwietering M H, Jongenburger I, Rombouts F M, van’t Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology , 1990, 56(6): 1875–1881
pmid:16348228
24 Sugita H, Matsuo N, Shibuya K, Degunchi Y. Production of antibacterial substances by intestinal bacteria isolated from coastal crab and fish species. Journal of Marine Biotechnology , 1996, 4: 220–223
25 Azad I S, Al-Marzouk A. Autochthonous aquaculture probiotics—a critical analysis. Research Journal of BioTechnology , 2008, 3: 171–177
26 Lazado C C, Caipang C M A, Rajan B, Brinchmann M F, Kiron V. Characterization of GP21 and GP12: two potential probiotic bacteria isolated from the gastrointestinal tract of Atlantic Cod. Probiotics & Antimicrobial Proteins , 2010, 2(2): 126–134
doi: 10.1007/s12602-010-9041-8
27 Balcazar J L, de Blas I, Ruiz-Zarzuela I, Vendrell D, Muzquiz J L. Probiotics: a tool for the future of fish and shellfish health management. Journal of Aquaculture in the Tropics , 2004, 19: 239–242
28 Geovanny D G R, Balcázar J L, Ma S. Probiotics as control agents in aquaculture. Journal of Ocean University of China , 2007, 6(1): 76–79 (in Chinese)
doi: 10.1007/s11802-007-0076-8
29 de Vuyst L, Vandamme E J. Bacteriocins of Lactic Acid Bacteria. London: Blackie Academic & Professional , 1994, 91–142
30 Salinas I, Cuesta A, Esteban M A, Meseguer J. Dietary administration of actobacillus delbrüeckiiL and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish & Shellfish Immunology , 2005, 19(1): 67–77
doi: 10.1016/j.fsi.2004.11.007 pmid:15722232
31 Parente E, Ricciardi A. Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied Microbiology and Biotechnology , 1999, 52(5): 628–638
doi: 10.1007/s002530051570 pmid:10570809
32 Duitman E H, Hamoen L W, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(23): 13294–13299
doi: 10.1073/pnas.96.23.13294 pmid:10557314
33 Bizani D, Brandelli A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. Journal of Applied Microbiology , 2002, 93(3): 512–519
doi: 10.1046/j.1365-2672.2002.01720.x pmid:12174052
34 Ghanbari M, Rezaei M, Soltani M, Shah-Hosseini G. Production of bacteriocin by a novel Bacillus sp. strain RF 140, an intestinal bacterium of Caspian Frisian Roach (Rutilus frisii kutum). Iranian Journal of Veterinary Research , 2009, 10(3): 267–272
35 Pinchuk I V, Bressollier P, Verneuil B, Fenet B, Sorokulova I B, Mégraud F, Urdaci M C. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial Agents and Chemotherapy , 2001, 45(11): 3156–3161
doi: 10.1128/AAC.45.11.3156-3161.2001 pmid:11600371
36 Messi P, Guerrieri E, Bondi M. Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiology Letters , 2003, 220(1): 121–125
doi: 10.1016/S0378-1097(03)00092-2 pmid:12644237
37 Lee K H, Jun K D, Kim W S, Paik H D. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology , 2001, 32(3): 146–151
doi: 10.1046/j.1472-765x.2001.00876.x pmid:11264742
38 Patel A K, Deshattiwar M K, Chaudhari B L, Chincholkar S B. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresource Technology , 2009, 100(1): 368–373
doi: 10.1016/j.biortech.2008.05.008 pmid:18585911
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed