Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 216-223    https://doi.org/10.1007/s11705-012-1289-y
RESEARCH ARTICLE
Production of a polyclonal antibody to the VP26 nucleocapsid protein of white spot syndrome virus (wssv) and its use as a biosensor
Suchera LOYPRASERT-THANANIMIT1,2(), Akrapon SALEEDANG2, Proespichaya KANATHARANA3,4, Panote THAVARUNGKUL3,5, Wilaiwan CHOTIGEAT1,2
1. Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; 2. Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; 3. Trace Analysis and Biosensor Research Center, Prince of Songkla University, Songkhla 90112, Thailand; 4. Department of Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand; 5. Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
 Download: PDF(273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

White spot syndrome virus (WSSV) is a major cause of high mortality in cultured shrimp all over the world. VP26 is one of the structural proteins of WSSV that is assumed to assist in recognizing its host and assists the viral nucleocapsid to move toward the nucleus of the host cell. The objective of this work was to produce a polyclonal antibody against VP26 and use it as a biosensor. The recombinant VP26 protein (rVP26) was produced in E. coli (BL21), purified and used for immunizing rabbits to obtain a polyclonal antibody. Western blot analysis confirmed that the antiserum had a specific immunoreactivity to the VP26 of WSSV. This VP26 antiserum was immobilized onto a gold electrode for use as the sensing surface to detect WSSV under a flow injection system. The impedance change in the presence of VP26 was monitored in real time. The sensitivity of the biosensor was in the linear range of 160–160000 copies of WSSV, indicating that it is good and sensitive for analysis of WSSV. The specificity of the biosensor was supported by the observation that no impedance change was detected even at high concentrations when using Yellow Head Virus (YHV). This biosensor may be applied to monitor the amount of WSSV in water during shrimp cultivation.

Keywords recombinant protein      polyclonal antibody      label-free biosensor      impedance      white spot syndrome virus (WSSV)     
Corresponding Author(s): LOYPRASERT-THANANIMIT Suchera,Email:suchera.l@psu.ac.th, loyprasert@yahoo.com   
Issue Date: 05 June 2012
 Cite this article:   
Suchera LOYPRASERT-THANANIMIT,Akrapon SALEEDANG,Proespichaya KANATHARANA, et al. Production of a polyclonal antibody to the VP26 nucleocapsid protein of white spot syndrome virus (wssv) and its use as a biosensor[J]. Front Chem Sci Eng, 2012, 6(2): 216-223.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1289-y
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/216
Fig.1  Schematic diagram showing the label-free impedimetric biosensor (a) and the impedance response when the antisera VP26 was immobilized on the modified electrode. The base-line signal of the carrier buffer is recorded initially. After injection of WSSV, the association of the immunocomplex between the VP26 antigen on the WSSV and antibody causes the impedance (″) to increase (b)
Fig.2  (a) Coomassie brilliant blue stained 14% SDS-PAGE gel and (b) Western blot using anti-VP26 polyclonal antibody for detecting GST and GST-VP26 protein expressed in (HB2151). Lane M: protein marker; lane 1: lysate of bacteria containing pGEX plasmid before induction with 1 mmol?L IPTG; lane 2: lysate of bacteria containing pGEX plasmid after induction with 1 mmol?L IPTG; lane 3: lysate of bacteria containing pGEX-VP26 plasmid before induction with 1 mmol?L IPTG; lane 4: lysate of bacteria containing pGEX-VP26 plasmid after induction with 1 mmol?L IPTG; lane 5: GST purified protein (29 kDa); lane 6: GST-VP26 purified protein (55 kDa)
Fig.3  Impedance change caused by the binding of different dilutions of WSSV stock solution to immobilized antisera VP26 on the gold electrode
Fig.4  Impedance signal with the other samples to test their binding to the immobilized antibody on the gold electrode
Fig.5  Reproducibility of the response obtained from the label-free biosensor by continuous injection of 1600 copies of WSSV after regeneration (HCl, pH 2.5) between each individual assay
1 Tsai J M, Wang H C, Leu J H, Hsiao H H, Wang A H J, Kou G H, Lo C F. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. Journal of Virology , 2004, 78(20): 11360-11370
doi: 10.1128/JVI.78.20.11360-11370.2004
2 Zhang X, Huang C, Tang X, Zhuang Y, Hew C L. Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins. Structure, Function, and Bioinformatics , 2004, 55(2): 229-235
doi: 10.1002/prot.10640
3 Xie X, Xu L, Yang F. Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. Journal of Virology , 2006, 80(21): 10615-10623
doi: 10.1128/JVI.01452-06
4 van Hulten M C W, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst R, Vlak J. The white spot syndrome virus DNA genome sequence. Virology , 2001, 286(1): 7-22
doi: 10.1006/viro.2001.1002
5 van Hulten M C W, Westenberg M, Goodall S D, Vlak J M. Identification of two major virion protein genes of white spot syndrome virus of shrimp. Virology , 2000, 266(2): 227-236
doi: 10.1006/viro.1999.0088
6 Wu W, Wang L, Zhang X. Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection. Virology , 2005, 332(2): 578-583
doi: 10.1016/j.virol.2004.12.011
7 Xie X, Yang F. Interaction of white spot syndrome virus VP26 protein with actin. Virology , 2005, 336(1): 93-99
doi: 10.1016/j.virol.2005.03.011
8 Chang P S, Lo C F, Wang Y C, Kou G H. Identification of white spot syndrome associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Diseases of Aquatic Organisms , 1996, 27: 131-139
doi: 10.3354/dao027131
9 Wongteerasupaya C, Wongwisansri S, Boonsaeng V, Panyim S, Pratanpipat P, Nash G L, Withyachumnarnkul B, Flegel T W. DNA fragment of Penaeus monodon baculovirus PmNOBII gives positive in situ hybridization with white-spot viral infections in six penaeid shrimp species. Aquaculture (Amsterdam, Netherlands) , 1996, 143(1): 23-32
doi: 10.1016/0044-8486(95)01244-3
10 Tapay L M, Nadala E C B Jr, LohP C. A polymerase chain reaction protocol for the detection of various geographical isolates of white spot virus. Journal of Virological Methods , 1999, 82(1): 39-43
doi: 10.1016/S0166-0934(99)00081-6
11 Lo C F, Ho C H, Peng S E, Chen C H, Hsu H C, Chiu Y L, Chang C F, Liu K F, Su M S, Wang C H, Kou G H. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of Aquatic Organisms , 1996, 27: 215-225
doi: 10.3354/dao027215
12 Durand S V, Redman R M, Mohney L L, Tang-Nelson K, Bonami J R, Lightner D V. Qualitative and quantitative studies on the relative virus load of tails and heads of shrimp acutely infected with WSSV. Aquaculture (Amsterdam, Netherlands) , 2003, 216(1-4): 9-18
doi: 10.1016/S0044-8486(02)00230-2
13 Kim S S, Park H. Development of a polymerase chain reaction (PCR) procedure for the detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimp. Journal of Fish Diseases , 1998, 21(1): 11-17
doi: 10.1046/j.1365-2761.1998.00324.x
14 Nadala E C B Jr, Loh P C. Dot-blot nitrocellulose enzyme immunoassays for the detection of white-spot virus and yellow-head virus of penaeid shrimp. Journal of Virological Methods , 2000, 84(2): 175-179
doi: 10.1016/S0166-0934(99)00140-8
15 Poulos B T, Pantoja C R, Bradley-Dunlop D, Aguilar J, Lightner D V. Development and application of monoclonal antibodies for the detection of white spot syndrome virus of penaeid shrimp. Diseases of Aquatic Organisms , 2001, 47: 13-23
doi: 10.3354/dao047013
16 You Z, Nadala E C B Jr, Yang J, Van Hulten M C W, Loh P C. Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus. Diseases of Aquatic Organisms , 2002, 51: 77-80
doi: 10.3354/dao051077
17 Anil T M, Shankar K M, Mohan C V. Monoclonal antibodies developed for sensitive detection and comparison of white spot syndrome virus isolates in India. Diseases of Aquatic Organisms , 2002, 51: 67-75
doi: 10.3354/dao051067
18 Cheng Q Y, Meng X L, Xu J P, Lu W, Wang J. Development of lateral-flow immunoassay for WSSV with polyclonal antibodies raised against recombinant VP (19+ 28) fusion protein. Virologica Sinica , 2007, 22(1): 61-67
doi: 10.1007/s12250-007-0063-7
19 Jaroenram W, Kiatpathomchai W, Flegel T W. Rapid and sensitive detection of white spot syndrome virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Molecular and Cellular Probes , 2009, 23(2): 65-70
doi: 10.1016/j.mcp.2008.12.003
20 Caygill R L, Blair G E, Millner P A. A review on viral biosensors to detect human pathogens. Analytica Chimica Acta , 2010, 681(1-2): 8-15
doi: 10.1016/j.aca.2010.09.038
21 Rapp B E, Gruhl F J, Lange K. Biosensors with label-free detection designed for diagnostic applications. Analytical and Bioanalytical Chemistry , 2010, 398(6): 2403-2412
doi: 10.1007/s00216-010-3906-2
22 Gauglitz G. Direct optical detection in bioanalysis: an update. Analytical and Bioanalytical Chemistry , 2010, 398(6): 2363-2372
doi: 10.1007/s00216-010-3904-4
23 Cooper M. Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry , 2003, 377(5): 834-842
doi: 10.1007/s00216-003-2111-y
24 Kerman K, Kobayashi M, Tamiya E. Recent trends in electrochemical DNA biosensor technology. Measurement Science & Technology , 2004, 15(2): R1-R11
doi: 10.1088/0957-0233/15/2/R01
25 Sadik O A, Aluoch A O, Zhou A L. Status of biomolecular recognition using electrochemical techniques. Biosensors & Bioelectronics , 2009, 200924: 2749-2765
26 Daniels J S, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis , 2007, 19(12): 1239-1257
doi: 10.1002/elan.200603855
27 Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón J M. Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation. Biosensors & Bioelectronics , 2009, 24(11): 3365-3371
doi: 10.1016/j.bios.2009.04.047
28 Thavarungkul P, Dawan S, Kanatharana P, Asawatreratanakul P. Detecting penicillin G in milk with impedimetric label-free immunosensor. Biosensors & Bioelectronics , 2007, 23(5): 688-694
doi: 10.1016/j.bios.2007.08.003
29 Katz E, Willner I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis , 2003, 15(11): 913-947
doi: 10.1002/elan.200390114
30 Pejcic B, de Marco R. Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochimica Acta , 2006, 51(28): 6217-6229
doi: 10.1016/j.electacta.2006.04.025
31 Bart M, Stigter E C A, Stapert H R, de Jong G J, van Bennekom W P. On the response of a label-free interferon-[gamma] immunosensor utilizing electrochemical impedance spectroscopy. Biosensors & Bioelectronics , 2005, 21(1): 49-59
doi: 10.1016/j.bios.2004.10.009
32 Dijksma M, Kamp B, Hoogvliet J C, van Bennekom W P. Development of an electrochemical immunosensor for direct detection of interferon-γ at the attomolar level. Analytical Chemistry , 2001, 73(5): 901-907
doi: 10.1021/ac001051h
33 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry , 1951, 193: 265-275
34 McEwan A D, Fisher E W, Selman I E, Penhale W J. A turbidity test for the estimation of immune globulin levels in neonatal calf serum. Clinica Chimica Acta , 1970, 27(1): 155-163
doi: 10.1016/0009-8981(70)90390-6
35 Berney H, West J, Haefele E, Alderman J, Lane W, Collins J K. A DNA diagnostic biosensor: development, characterisation and performance. Sensors and Actuators. B, Chemical , 2000, 68(1-3): 100-108
doi: 10.1016/S0925-4005(00)00468-8
36 Xie Z, Xie L, Pang Y, Lu Z, Xie Z, Sun J, Deng X, Liu J, Tang X, Khan M. Development of a real-time multiplex PCR assay for detection of viral pathogens of penaeid shrimp. Archives of Virology , 2008, 153(12): 2245-2251
doi: 10.1007/s00705-008-0253-0
37 Shekhar M S, Gopikrishna G. Development of immunodot blot assay for the detection of white spot syndrome virus infection in shrimps (Penaeus monodon). Aquaculture and Research , 2010, 41(11): 1683-1690
doi: 10.1111/j.1365-2109.2010.02553.x
38 Small H J, Pagenkopp K M. Reservoirs and alternate hosts for pathogens of commercially important crustaceans: a review. Journal of Invertebrate Pathology , 2011, 106(1): 153-164
doi: 10.1016/j.jip.2010.09.016
39 Stentiford G D, Bonami J R, Alday-Sanz V. A critical review of susceptibility of crustaceans to Taura syndrome, yellowhead disease and white spot disease and implications of inclusion of these diseases in European legislation. Aquaculture (Amsterdam, Netherlands) , 2009, 291(1-2): 1-17
doi: 10.1016/j.aquaculture.2009.02.042
40 Cano-Gomez A, Bourne D G, Hall M R, Owens L, H?j L. Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: current methods and future prospects. Aquaculture (Amsterdam, Netherlands) , 2009, 287(1-2): 1-10
doi: 10.1016/j.aquaculture.2008.10.058
41 Quilliam R S, Williams A P, Avery L M, Malham S K, Jones D L. Unearthing human pathogens at the agricultural-environment interface: a review of current methods for the detection of Escherichia coli O157 in freshwater ecosystems. Agriculture, Ecosystems & amp. Environment , 2011, 140: 354-360
42 Powell J W B, Burge E J, Browdy C L, Shepard E F. Efficiency and sensitivity determination of Shrimple?, an immunochromatographic assay for white spot syndrome virus (WSSV), using quantitative real-time PCR. Aquaculture (Amsterdam, Netherlands) , 2006, 257(1-4): 167-172
doi: 10.1016/j.aquaculture.2006.03.010
43 Gao H, Kong J, Li Z, Xiao G, Meng X. Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp Fenneropenaeus chinensis by real-time PCR. Aquaculture (Amsterdam, Netherlands) , 2011, 312(1-4): 26-31
doi: 10.1016/j.aquaculture.2010.12.022
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed