Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (2) : 132-138    https://doi.org/10.1007/s11705-012-1290-5
RESEARCH ARTICLE
Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings
Elena SMIRNOVA1(), Alexander GUSEV2, Olga ZAYTSEVA2, Olga SHEINA2, Alexey TKACHEV3, Elena KUZNETSOVA4, Elena LAZAREVA1, Galina ONISHCHENKO1, Alexey FEOFANOV1,5, Mikhail KIRPICHNIKOV1,5
1. Biology Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; 2. Derzhavin Tambov State University, Tambov 392000, Russia; 3. Siberian Institute of Plants Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia; 4. NanoTechCenter Ltd., Tambov 392000, Russia; 5. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
 Download: PDF(608 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We have studied the effect of the engineered nanomaterial Taunit, containing multiwalled carbon nanotubes (MWCNTs), on the growth of Onobrychis arenaria seedlings and investigated whether affected plants uptake and accumulate MWCNTs. We found that 100 μg/mL and 1000 μg/mL of Taunit stimulated the growth of roots and stems, and enhanced the peroxidase activity in these parts of plants. Microscopy studies showed the presence of MWCNTs in the root and leaf tissues of seedlings exposed to Taunit, suggesting that MWCNTs have a capacity to penetrate the cell walls, accumulate in roots and translocate to the leaves. Thus the stimulating effect of MWCNTs on seedlings of O. arenaria may be associated with the primary uptake and accumulation of MWCNTs by plant roots followed by translocation to the other plant tissues.

Keywords multiwalled carbon nanotubes      plants      electron microscopy     
Corresponding Author(s): SMIRNOVA Elena,Email:kinggobi@yandex.ru   
Issue Date: 05 June 2012
 Cite this article:   
Elena SMIRNOVA,Alexander GUSEV,Olga ZAYTSEVA, et al. Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings[J]. Front Chem Sci Eng, 2012, 6(2): 132-138.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1290-5
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I2/132
ConcentrationsEnergy of germination /%Germination rate /%Stems /mmRoots /mmPeroxidase activity /(arbitrary units of activity/gram of tissue fresh weight/second)
1000 mg/L11410225.4±1.2832±0.970.185±0.019
100 mg/L11410725.7±1.0128.7±0.830.313±0.012
ControL10010013.92±1.2818.4±1.280.115±0.012
Tab.1  Morphometric and biochemical characteristics of seedlings exposed to Taunit
ConcentrationsStems /mmRoots /mm
10 mg/L17.3±1.2131.3±0.9
1 mg/L19.6±0.9029.5±1.2
0.1 mg/L19.0±0.8125.6±1.21
Control13.2±0.7125.4±1.4
Tab.2  Morphometric parameters of seedlings exposed to low concentrations of Taunit
Fig.1  Estimated activity of horseradish peroxidase in the presence of colloidal water solution of Taunit
Fig.2  Whole mount preparations of root (a, b) and leaf (c, d) of seedling grown in the presence of Taunit
Fig.3  TEM analysis of ultrathin sections of seedlings grown in the presence of Taunit. (a): large agglomerate of Taunit adhered to the root surface. (b): agglomerates of Taunit, containing MWCNTs, in the root tissue. MWCNT piercing the cell wall is shown with arrow, enlarged image inserted at the right bottom. (c): accumulation of MWCNTs in the epidermal cell. Arrows show small agglomerates of Taunit embedded into the cell wall. (d): accumulation of Taunit in the leaf cell
Fig.4  Analysis of CNM containing MWCNTs with SAED. (A): ultrathin section of pure Taunit sample. (B): the area on A, analyzed with SAED. (C): diffraction pattern of the same area. (D): ultrathin section of the plant leaf cell containing the accumulation of Taunit with entangled bundles of MWCNTs. (E): the area on D, analyzed with SAED. (F): diffraction pattern of the same area. (G): ultrathin section of the macrophage with inclusion of Taunit, composed of MWCNT bundles. (H): the area on G, analyzed with SAED. (I): diffraction pattern of the same area
1 Handy R D, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology , 2008, 17(5): 315-325
doi: 10.1007/s10646-008-0206-0 pmid:18408994
2 Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International , 2006, 32(8): 967-976
doi: 10.1016/j.envint.2006.06.014 pmid:16859745
3 Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. The Science of the total environment , 2010, 408(16): 3053-3061
doi: 10.1016/j.scitotenv.2010.03.031 pmid:20435342
4 Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology , 2008, 17(5): 372-386
doi: 10.1007/s10646-008-0214-0 pmid:18461442
5 Ruffini Castiglione M, Cremonini R. Nanoparticles and higher plants. Cariologia , 2009, 62: 161-165
6 Berhanu D, Dybowska A, Misra S K, Stanley C J, Ruenraroengsak P, Boccaccini A R, Tetley T D, Luoma S N, Plant J A, Valsami-Jones E. Characterisation of carbon nanotubes in the context of toxicity studies. Environmental Health : A Global Access Science Source , 2009, 8(Suppl 1): S3
doi: 10.1186/1476-069X-8-S1-S3 pmid:20102588
7 Yuliang Z, Genmei X, Zhifang C. Are carbon nanotubes safe? Nature Nanotechnology , 2008, 4: 191-192
8 Poland C A, Duffin R, Kinloch I, Maynard A, Wallace W A, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology , 2008, 3(7): 423-428
doi: 10.1038/nnano.2008.111 pmid:18654567
9 Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris A S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano , 2009, 3(10): 3221-3227
doi: 10.1021/nn900887m pmid:19772305
10 Wild E, Jones K C. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science & Technology , 2009, 43(14): 5290-5294
doi: 10.1021/es900065h pmid:19708355
11 Lin S, Reppert J, Hu Q, Hudson J S, Reid M L, Ratnikova T A, Rao A M, Luo H, Ke P C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small , 2009, 5(10): 1128-1132
pmid:19235197
12 Ca?as J E, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee E H, Olszyk D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry , 2008, 27(9): 1922-1931
doi: 10.1897/08-117.1 pmid:19086209
13 Tkachev A G, Zolotukhin I V. The equipment and technique for synthesis of solid-state nanostructures. Moscow. Mashinostroenie , 2007, 1: 316
14 Padu E K. Properties of peroxidases and phenylalanine ammonia-lyase in wheat stems during secondary cell wall formation and lignifications. Physiologia Plantarum , 1995, 42: 408-415
15 Boyarkin A N. The method for fast evaluation of peroxidase activity. Russian Journal of Biochemistry , 1951, 16: 352-355
16 Pausheva Z P. Plant cell cytology, practical approach. Moscow: Kolos, 1974, 288
17 Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere , 2009, 75(7): 850-857
doi: 10.1016/j.chemosphere.2009.01.078 pmid:19264345
18 Chehab E W, Eich E, Braam J. Thigmomorphogenesis: a complex plant response to mechano-stimulation. Journal of Experimental Botany , 2008, 60(1): 43-56
doi: 10.1093/jxb/ern315 pmid:19088336
19 Ostin A, Kowalyczk M, Bhalerao R P, Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology , 1998, 118(1): 285-296
doi: 10.1104/pp.118.1.285 pmid:9733548
20 Woodward A W, Bartel B. Auxin: regulation, action, and interaction. Annals of Botany , 2005, 95(5): 707-735
doi: 10.1093/aob/mci083 pmid:15749753
21 Andreeva V A. Peroxidase and its role in plant defense mechanism. Moscow: Nauka, 1988, 128
22 Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters , 2009, 9(3): 1007-1010
doi: 10.1021/nl803083u pmid:19191500
23 Serag M F, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano , 2011, 5(1): 493-499
doi: 10.1021/nn102344t pmid:21141871
[1] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[2] Xiuqi Fang, Carles Corbella, Denis B. Zolotukhin, Michael Keidar. Plasma-enabled healing of graphene nano-platelets layer[J]. Front. Chem. Sci. Eng., 2019, 13(2): 350-359.
[3] Hideyuki KATSUMATA, Yuta ODA, Satoshi KANECO, Tohru SUZUKI, Kiyohisa OHTA. Determination of aniline derivatives in water samples after preconcentration with oxidized multiwalled carbon nanotubes as solid-phase extraction disk[J]. Front Chem Sci Eng, 2012, 6(3): 270-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed