Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 149-155    https://doi.org/10.1007/s11705-014-1409-y
RESEARCH ARTICLE
Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone ammoximation
Pengxu YAO,Yaquan WANG(),Teng ZHANG,Shuhai WANG,Xiaoxue WU
Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(756 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Titanium silicalite-1 (TS-1) has been hydrothermally synthesized with tetrapropylammonium hydroxide (TPAOH) as the template in the presence of various amounts of Na+, characterized by inductively coupled plasma, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and ultro-violet-visible spectroscopy and studied in cyclohexanone ammoximation. The characterization results show that with the increase of Na+ concentration in the synthesis, both the crystal sizes of TS-1and extra framework Ti increase but framework Ti decreases. The addition of Na+ below 3 mol-% of TPAOH in the synthesis does not influence the catalytic properties with above 98% conversion of cyclohexanone and 99.5% selectivity to cyclohexanone oxime. However, at the concentrations of Na+≥3 mol-% of TPAOH in the synthesis, the catalysts are deactivated faster with the increase of Na+ addition, which can be attributed to more high molecular weight byproducts deposited in the large TS-1 particles and the loss of the frame-work titanium. The results of this work are of great importance for the industry.

Keywords extra framework Ti      cyclohexanone ammoximation      titanium silicalite-1      sodium ion      crystal size     
Corresponding Author(s): Yaquan WANG   
Issue Date: 22 May 2014
 Cite this article:   
Pengxu YAO,Yaquan WANG,Teng ZHANG, et al. Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone ammoximation[J]. Front. Chem. Sci. Eng., 2014, 8(2): 149-155.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1409-y
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/149
Fig.1  XRD patterns of TS-1-x synthesized in the presence of various concentrations of Na+
SamplesCrystal sizesa)/nmSi/Ti bulk molar ratiob)Surface Si/Ti molar ratioc)Ratio of band intensity (960 cm–1/550 cm–1) d)
TS-1-021225.325.01.1
TS-1-122025.317.70.96
TS-1-2.525825.117.50.94
TS-1-326424.817.30.94
TS-1-427824.916.80.90
TS-1-528124.516.60.85
TS-1-1028324.313.10
Tab.1  Properties of TS-1-x synthesized in the presence of various concentrations of Na+
Fig.2  SEM images of TS-1-x synthesized in the presence of various concentrations of Na+
Fig.3  FT-IR spectra of TS-1 samples synthesized in the presence of various concentrations of Na+
Fig.4  UV-Vis spectra of TS-1 samples synthesized in the presence of various concentrations of Na+
Fig.5  Catalytic performances of TS-1-x in the ammoximation of cyclohexanone

Reaction conditions: 0.5 g catalyst; 349 K, 0.1 MPa, WHSV= 12.2 h–1, 7.0 wt-% H2O2, 18 wt-% cyclohexanone in t-butanol

1 RoffiaP, LeofantiG, CesanaA, MantegazzaM, PadovanM, PetriniG, TontiS, GervasuttiP. Cyclohexanone ammoximation: A break through in the 6-caprolactam production process. Studies in Surface Science and Catalysis, 1990, 55: 43-52
doi: 10.1016/S0167-2991(08)60132-9
2 DahlhoffG, NiedererJ P M, HoelderichW F. ϵ-Caprolactam: New by-product free synthesis routes. Catalysis Reviews. Science and Engineering, 2001, 43(4): 381-441
doi: 10.1081/CR-120001808
3 Le BarsJ, DakkaJ, SheldonR A. Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves. Applied Catalysis A, General, 1996, 136(1): 69-80
doi: 10.1016/0926-860X(95)00264-2
4 TvaruzkovaZ, PetrasM, HabersbergerK, JiruP. Surface complexes of cyclohexanone and aqueous solution of NH3 on Ti-silicalite in liquid phase. Catalysis Letters, 1992, 13(1-2): 117-122
doi: 10.1007/BF00770953
5 PinelliD, TrifiròF, VaccariA, GiamelloE, PedulliG. Nature of active sites in catalytic ammoximation of cyclohexanone to the corresponding oxime on amorphous silica: E.P.R. investigations. Catalysis Letters, 1992, 13(1-2): 21-26
doi: 10.1007/BF00770943
6 YipA C K, LamF L Y, HuX J. A heterostructured titanium silicalite-1 catalytic composite for cyclohexanone ammoximation. Microporous and Mesoporous Materials, 2009, 120(3): 368-374
doi: 10.1016/j.micromeso.2008.12.003
7 YasuiE, KawaguchiT, MatsubaraT, KatoH. US Patent, 3562328, 1971-<month>09</month>-<day>02</day>
8 RoffiaP, PadovanM, MorettiE, De AlbertiG. EP 0208311, 1985-<month>07</month>-<day>10</day>
9 ThangarajA, SivasankerS, RatanasamyP. Catalytic properties of crystalline titanium silicalites III.Ammoximation of cyclohexanone. Journal of Catalysis, 1991, 131(2): 394-400
doi: 10.1016/0021-9517(91)90274-8
10 CesanaA, MantegazzaM A, PastoriM. A study of the organic by-products in the cyclohexanone ammoximation. Journal of Molecular Catalysis A Chemical, 1997, 117(1-3): 367-373
doi: 10.1016/S1381-1169(96)00296-8
11 Dal PozzoL, FornsariG, MontiT. TS-1, catalytic mechanism in cyclohexanone oxime production. Catalysis Communications, 2002, 3(8): 369-375
doi: 10.1016/S1566-7367(02)00145-0
12 KhouwC B, DavisM E. Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions. Journal of Catalysis, 1995, 151(1): 77-86
doi: 10.1006/jcat.1995.1010
13 LiG, WangX, YanH, ChenY, SuQ. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite. Applied Catalysis A, General, 2001, 218(1-2): 31-38
doi: 10.1016/S0926-860X(01)00607-X
14 TatsumiT, KoyanoK A, ShimizuY. Effect of potassium on the catalytic activity of TS-1. Applied Catalysis A, General, 2000, 200(1-2): 125-134
doi: 10.1016/S0926-860X(00)00630-X
15 TaramassoM, PeregoG, NotariB. US Patent, 4410501, 1983-<month>10</month>-<day>18</day>
16 SerranoD P, SanzR, PizarroP, MorenoI, FrutosP D, BlázquezS. Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catalysis Today, 2009, 143(1-2): 151-157
doi: 10.1016/j.cattod.2008.09.039
17 KeX B, XuL, ZengC F, ZhangL X, XuN P. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials, 2007, 106(1-3): 68-75
doi: 10.1016/j.micromeso.2007.02.034
18 GrieneisenJ L, KesslerH, FachE, GovicA M L. Synthesis of TS-1 in fluoride medium. A new way to a cheap and efficient catalyst for phenol hydroxylation. Microporous and Mesoporous Materials, 2000, 37(3): 379-386
doi: 10.1016/S1387-1811(00)00174-8
19 PerssonA E, SchoemanB J, SterteJ, OtterstedtJ E. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA) ZSM-5 crystals. Zeolites, 1995, 15(7): 611-619
doi: 10.1016/0144-2449(95)00070-M
20 GriekenR V, SoteloJ L, MenéndezJ M, MeleroJ A. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000, 39(1-2): 135-147
doi: 10.1016/S1387-1811(00)00190-6
21 NamH J, AmemiyaT, MurabayashiM, ItohK. The influence of Na+ on the crystallite size of TiO2 and the photocatalytic activity. Research on Chemical Intermediates, 2005, 31(4-6): 365-370
doi: 10.1163/1568567053956725
22 HuybrechtsD R C, VaesenI, LiH X, JacobsP A. Factors influencing the catalytic activity of titanium silicalites in selective oxidations. Catalysis Letters, 1991, 8(2-4): 237-244
doi: 10.1007/BF00764122
23 BoccutiM R, RaoK M, ZecchinaA, LeofantiG, PetriniG. Spectroscopic characterization of silicalite and titanium-silicalite. Studies in Surface Science and Catalysis, 1989, 48: 133-144
doi: 10.1016/S0167-2991(08)60677-1
24 ZecchinaA, SpotoG, BordigaS, PadovanM, LeofantiG, PetriniG. IR spectra of CO adsorbed at low temperature (77 K) on titaniumsilicalite, H-ZSM5 and silicalite. Studies in Surface Science and Catalysis, 1991, 65: 671-680
doi: 10.1016/S0167-2991(08)62951-1
25 VayssilovG N. Structural and physicochemical features of titanium silicalites. Catalysis Reviews. Science and Engineering, 1997, 39(3): 209-251
doi: 10.1080/01614949709353777
26 ThangarajA, KumarR, MirajkarS P, RatnasamyP. Catalytic properties of crystalline titanium silicalites I.Synthesis and characterization of titanium-rich zeolites with MFI structure. Journal of Catalysis, 1991, 130(1): 1-8
doi: 10.1016/0021-9517(91)90086-J
27 ZecchinaA, SpotoG, BordigaS, FerreroA, PetriniG, LeofantiG, PadovanM. Framework and extraframework Ti in titanium-silicalite: Investigation by means of physical methods. Studies in Surface Science and Catalysis, 1991, 69: 251-258
doi: 10.1016/S0167-2991(08)61576-1
28 KimY L, RileyR L, HuqM J, SalimS. LeA E, MalloukT E. Zeolitic materials as organizing media for semiconductor-based artificial photosynthetic systems. MRS Proceedings, 1991, 233: 145-156
29 FanW, WuP, NambaS, TatsumiT. A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angewandte Chemie International Edition, 2004, 43(2): 236-240
doi: 10.1002/anie.200352723
30 FanW, WuP, NambaS, TatsumiT. Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. Journal of Catalysis, 2006, 243(1): 183-191
doi: 10.1016/j.jcat.2006.07.003
31 FanW, DuanR, YokoiT, WuP, KubotaY, TatsumiT. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. Journal of the American Chemical Society, 2008, 130(31): 10150-10164
doi: 10.1021/ja7100399
32 ChoiJ S, KimD J, ChangS H, AhnW S. Catalytic applications of MCM-41 with different pore sizes in selected liquid phase reactions. Applied Catalysis A, General, 2003, 254(2): 225-237
doi: 10.1016/S0926-860X(03)00485-X
[1] Glenn J. Sim, Kakui Ma, Zhixiang Huang, Shaozhuan Huang, Ye Wang, Huiying Yang. Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries[J]. Front. Chem. Sci. Eng., 2019, 13(3): 493-500.
[2] Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Front. Chem. Sci. Eng., 2018, 12(4): 780-789.
[3] Juan XU,Yaquan WANG,Wenping FENG,Yi LIN,Shuhai WANG. Effect of triethylamine treatment of titanium silicalite-1 on propylene epoxidation[J]. Front. Chem. Sci. Eng., 2014, 8(4): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed