Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 114-122    https://doi.org/10.1007/s11705-014-1413-2
RESEARCH ARTICLE
Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore
Tingting LIU1, Lihong LIU1, Jian LIU1, Shaomin LIU1(), Shi Zhang QIAO2()
1. Department of Chemical Engineering, Curtin University, Perth WA 6845, Australia; 2. School of Chemical Engineering, The University of Adelaide, SA5005, Australia
 Download: PDF(593 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnetic Fe3O4 and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal (P6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH2-functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.

Keywords mesoporous silicas      magnetic nanoparticles      core-shell nanoparticles      cell uptake     
Corresponding Author(s): LIU Shaomin,Email:shaomin.liu@curtin.edu.au; QIAO Shi Zhang,Email:s.qiao@adelaide.edu.au   
Issue Date: 05 March 2014
 Cite this article:   
Tingting LIU,Lihong LIU,Jian LIU, et al. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore[J]. Front Chem Sci Eng, 2014, 8(1): 114-122.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1413-2
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/114
Fig.1  scheme1 The formation of magnetic FeO and mesoporous silica core-shell nanospheres with tunable size (FeO@-SiO-)
SampleWater /mLEthanol /mLTEOS /mLNH3-H2O /mLAverage Particle size /nmBET surface area /(m2·g-1)Pore diameter /nmVoid pore diameter /nmTotal pore volume /(cm3·g-1)
Fe3O4@meso-SiO2-11035261.01.01103652.10.30
Fe3O4@meso-SiO2-20033281.01.02003042.10.23
Fe3O4@meso-SiO2-42031301.01.04204122.18.00.32
Fe3O4@meso-SiO2-60029321.01.06005672.18.00.40
Fe3O4@meso-SiO2-65027341.01.06503662.520.00.45
Fe3O4@meso-SiO2-80025361.01.08005272.120.00.49
Tab.1  Physicochemical properties of magnetic mesoporous silicas nanospheres/FeO@-SiO prepared under various synthesis parameters
Fig.2  SEM images of FeO@-SiO- with different particle sizes (a) FeO@-SiO-110; (b) FeO@-SiO-200; (c) FeO@-SiO-420; (d) FeO@-SiO-600
Fig.3  TEM images of FeO@-SiO- with different particle sizes (a, b) FeO@-SiO-110; (c, d) FeO@-SiO-200; (e, f) FeO@-SiO-420; (g, h) FeO@-SiO-600; (i, j) FeO@-SiO-650; (g, h) FeO@-SiO-800
Fig.4  (A) Small angle and (B) wide-angle XRD patterns of FeO@-SiO- with different particle sizes (a) FeO@-SiO- (b) FeO@-SiO-200; (c) FeO@-SiO-420; (d) FeO@-SiO-600; (e) FeO@-SiO-650; (f) FeO@-SiO-800
Fig.5  A) Nitrogen-sorption isotherms, and (B) BJH pore-size distribution of FeO@-SiO- with different particle sizes: (a) FeO@-SiO-110; (b) FeO@-SiO-200; (c) FeO@-SiO-420; (d) FeO@-SiO-600; (e) FeO@-SiO-650; (f) FeO@-SiO-800
Fig.6  Field-dependent magnetization at 300 K of FeO@-SiO- with different particle sizes (a) FeO@-SiO-420; (b) FeO@-SiO-600; (c) FeO@-SiO-650
Fig.7  Confocal microscopic images of intracellular localization in HeLa cells: The cell up-take efficiency of FeO@-SiO-NH-200 was examined by labelling the particles with a 21-nt oligo DNA conjugated with Cy-3; the oligo DNA-Cy3 (DNA-Cy3) or FeO@-SiO-NH-200 alone is negative for Cy3 signal. FeO@-SiO-NH-200 with oligo DNA-Cy3 shows very strong orange fluorescence signal
1 Lu A H, Schmidt W, Matoussevitch N, Bonnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie International Edition , 2004, 43(33): 4303–4306
doi: 10.1002/anie.200454222
2 Liu J, Qiao S Z, Hu Q H, Lu G Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small , 2011, 7(4): 425–443
doi: 10.1002/smll.201001402
3 Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán L M. Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials , 2010, 22(11): 1182–1195
doi: 10.1002/adma.200901263
4 Wu P G, Zhu J H, Xu Z H. Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Advanced Functional Materials , 2004, 14(4): 345–351
doi: 10.1002/adfm.200305455
5 Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials , 2006, 18(3): 614–619
doi: 10.1021/cm0512979
6 Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society , 2006, 128(3): 688–689
doi: 10.1021/ja0565875
7 Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition , 2008, 47(44): 8438–8441
doi: 10.1002/anie.200802469
8 Liong X, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano , 2008, 2(5): 889–896
doi: 10.1021/nn800072t
9 Zhang L, Qiao S Z, Jin Y G, Yang H G, Budihartono S, Stahr F, Yan Z F, Wang X L, Hao Z P, Lu G Q. Fabrication and size-selective bioseparation of magnetic silica nanospheres with highly ordered periodic mesostructure. Advanced Functional Materials , 2008, 18(20): 3203–3212
doi: 10.1002/adfm.200800363
10 Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials , 2009, 21(17): 3979–3986
doi: 10.1021/cm901259n
11 Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chemistry of Materials , 2007, 19(14): 3455–3463
doi: 10.1021/cm0705789
12 Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Magnetic-mesoporous Janus nanoparticles. Chemical Communications , 2011, 47(4): 1225–1227
doi: 10.1039/c0cc03946b
13 Zhao Y, Lin L N, Lu Y, Gao H L, Chen S F, Yang P, Yu S H. Synthesis of tunable theranostic Fe3O4@mesoporous silica nanospheres for biomedical applications. Advanced Healthcare Materials , 2012, 1(3): 327–331
doi: 10.1002/adhm.201200005
14 Liu Q, Zhang J X, Xia W L, Gu H C. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. Nanoscale , 2012, 4(11): 3415–3421
doi: 10.1039/c2nr30352c
15 Liu J, Wang B, Hartono S B, Liu T T, Kantharidis P, Middelberg A P J, Lu G Q, He L Z, Qiao S Z. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials , 2012, 33(3): 970–978
doi: 10.1016/j.biomaterials.2011.10.001
16 Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews , 2007, 107(7): 2821–2860
doi: 10.1021/cr068020s
17 Deng Y, Qi D, Deng C, Zhang X, Zhao D Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society , 2008, 130(1): 28–29
doi: 10.1021/ja0777584
18 Wang P, Shi Q H, Shi Y F, Clark K K, Stucky G D, Keller A A. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. Journal of the American Chemical Society , 2009, 131(1): 182–188
doi: 10.1021/ja806556a
19 Hartono S B, Gu W Y, Kleitz F, Liu J, He L Z, Middelberg A P J, Yu C Z, Lu G Q, Qiao S Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano , 2012, 6(3): 2104–2117
doi: 10.1021/nn2039643
20 Na H K, Kim M H, Park K, Ryoo R S, Lee K E, Jeon H, Ryoo R, Hyeon C B, Min D H. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small , 2012, 8(11): 1752–1761
doi: 10.1002/smll.201200028
21 Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano , 2011, 5(7): 5390–5399
doi: 10.1021/nn200365a
22 Zhao W R, Zhang H T, Chang S, Gu J L, Li Y S, Li L, Shi J L. An organosilane route to mesoporous silica nanoparticles with tunable particle and pore sizes and their anticancer drug delivery behavior. RSC Advances , 2012, 2(12): 5105–5107
doi: 10.1039/c2ra20166f
23 Chen Z T, Niu D C, Li Y S, Shi J L. One-step approach to synthesize hollow mesoporous silica spheres co-templated by an amphiphilic block copolymer and cationic surfactant. RSC Advances , 2013, 3(19): 6767–6770
doi: 10.1039/c3ra00058c
24 Niu D C, Ma Z, Li Y S, Shi J L. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. Journal of the American Chemical Society , 2010, 132(43): 15144–15147
doi: 10.1021/ja1070653
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed