Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (3) : 330-339    https://doi.org/10.1007/s11705-014-1419-9
RESEARCH ARTICLE
Isolation, identification and primary application of bacteria from putrid alkaline silica sol
Lijie REN,Ye HAN,Shuwen YANG,Xiqian TAN,Jin WANG,Xin ZHAO,Jie FAN,Ting DONG,Zhijiang ZHOU()
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(457 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The putrefaction of alkaline silica sol was investigated in this paper. The total colony numbers in three alkaline silica sol samples were 1.47×105, 1.25×104, and 9.45×104 cfu·mL–1, respectively. The salt- and alkali-tolerant strains were isolated and selected using nutrient agar medium at 2.5% salinity and pH 9.5. Basic morphological, physiological and biochemical tests were conducted to confirm the preliminary characterizations of the strains. Based on API 50 CH test and 16S rDNA gene sequence analysis, the isolated strains were finally identified as Exiguobacterium aurantiacum, Cyclobacteriaceae bacterium, Microbacterium sp., Acinetobacter sp., Stenotrophomonas maltophilia and Bacillus thuringiensis. The survivability of the strains under different conditions such as salinities, acidities and temperatures was also studied. Some suitable methods for degerming, such as product pipe steam sterilization and regular canister cleaning, were proposed. To explore the possibility of isolates in industrial application, their alkaline protease and amylase production abilities were preliminarily studied. Five strains produced alkaline protease, whereas two strains produced alkaline amylase. Thus, understanding of the putrefaction on alkaline silica sol would be beneficial for improving industrial production.

Keywords putrid alkaline silica sol      alkaliphile      isolation and identification      sterilization      alkaline protease and alkaline amylase     
Corresponding Author(s): Zhijiang ZHOU   
Issue Date: 11 October 2014
 Cite this article:   
Lijie REN,Ye HAN,Shuwen YANG, et al. Isolation, identification and primary application of bacteria from putrid alkaline silica sol[J]. Front. Chem. Sci. Eng., 2014, 8(3): 330-339.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1419-9
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I3/330
StrainColony diameterProtuberanceBorderlineSurfaces glossColony textureColony colorCell morphologicalMycoderm
EX0>1mmSwellNeatGlossySmooth and moistLight orangeRod or sphere rod+
EX1<1mmSwellNeatGlossySmooth and moistRedRound or sphere
EX2<1mmLittle swellNeatGlossySmooth and moistWhiteShort rod or rod+
EX3≈ 1.5mmnoneNeatGlossySoft and moistWhiteShort rod or rod
EX4<1mmSwellNeatRelusterSoft and dryTransparentRod or sphere rod
EX5≈ 2mmLittle swellNeatGlossyViscous and moistMilk whiteShort rod or rod++
Tab.1  Morphological characteristics of isolated strains
Test names/sequence numberEX0EX1EX2EX3EX4EX5
Acid productGas productAcid productGas? product?Acid productGas product?Acid productGas? product?Acid productGas ??product???Acid productGas product
Carbohydrates ?fermentationGlucose+++++++ +
Maltose+++++++ +
Xylitol++
Lactose
Galactose+++
Sucrose++++++ +
D-fructose++++ +
Rhamnose
Mannitol
Sorbitol
Glucosamine test++
Litmus milk testAcid product
Alkaline productpeptonization+++ +
Acid curding+ +
Chymosin ?curdingdeoxidation+++++ +
Catalase activityUrease activity++++++ +
Trip sugar-iron ?agar testUpper yellow+++ +
Lower yellow++++ +
Bubble+
Turn black+++ +
Diffused++++ +
Citrate test+
Starch hydrolysis test+++ +
Tab.2  Physiological and Biochemical characteristics of tested strains
Fig.1  Survivabilities of the six strains at different salinities. The graph’s horizontal axis shows the salinities, and the vertical axis shows the number of bacteria colonies. Each column represents a strain. Vertical bars represent standard deviations of three replicates
Fig.2  Survivabilities of the six strains at different acidities. The graph’s horizontal axis shows different pH values, and the vertical axis shows the number of bacteria colonies. Each column represents a strain. Vertical bars represent standard deviations of three replicates
Fig.3  Survivabilities of the six strains at different temperatures. The graph’s horizontal axis shows different temperatures, and the vertical axis shows the number of bacteria colonies. Each column represents a strain. Vertical bars represent standard deviations of three replicates
NumbersEX0EX1EX2EX3EX4EX5
24 h48 h24 h48 h24 h48 h24 h48 h24 h48 h24 h48 h
0
1V+V+V+VV
2
3
4
5VV+VVV
6VV
7
8
9
10++
11++++++++++
12++V++V+
13++
14
15
16
17
18++
19
20
21++
22++++++++++
23++
24++++++++++
25++++++++++++
26++++++++++
27++
28++++++++++
29
30
31++++++++
32++++++++
33
34
35
36++V
37++V+
38
39++V
40VV
41
42
43
44
45
46
47
48
49
Tab.3  Appraisal result of Analytic Products Inc
Fig.4  PCR results of 16S rDNA. The lane of M represents a DGL2000 DNA Marker and the numbers on the left show the length of each band of the marker. The lane of 1 is the negative control. Strains in 2–7 lanes are EX0, EX1, EX2, EX3, EX4, EX5
StrainsSequence length /bpHomology /%Result of identificationGenBank accession number
EX0150797%Exiguobacterium aurantiacumHM030747
EX1138696%Cyclobacteriaceae bacteriumHM140980
EX2139697%Microbacterium sp.FR754552
EX3144098%Acinetobacter sp.HQ704716
EX4151699%Stenotrophomonas maltophiliaFM213389
EX51438100%Bacillus thuringiensisGU391512
Tab.4  Identification of tested strains according to sequence analysis and phenotypic characterization
1 Axelsson M. Mechanical tests on a new non-cementitious grout, silica sol: a laboratory study of the material characteristics. Tunnelling and Underground Space Technology, 2006, 21(5): 554–560
https://doi.org/10.1016/j.tust.2005.09.002
2 Butrón C, Axelsson M, Gustafson G. Silica sol for rock grouting: laboratory testing of strength, fracture behavior and hydraulic conductivity. Tunnelling and Underground Space Technology, 2009, 24(6): 603–607
https://doi.org/10.1016/j.tust.2009.04.003
3 Schwerin. Manufacture of chemically pure soluble silica acid. US Patent, 1132394, 1915–<month>03</month>–<day>16</day>
4 Bird. Colloidal solutions of inorganic oxides. US 2244325, 1941–<month>06</month>–<day>03</day>
5 Yin X, Dai Y J. Properties, preparations and applications of silica sol. Chemical Propellants & Polymeric Materials, 2005, 3(6): 27–32
6 Zhang H N, Zhao Y, Akins D L. Synthesis and new structure shaping mechanism of silica particles formed at high pH. Journal of Solid State Chemistry, 2012, 194: 277–281
https://doi.org/10.1016/j.jssc.2012.05.031
7 Patwardhan S V, Clarson S J. Silicification and biosilicification: Part 5-An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Materials Science and Engineering C, 2003, 23(4): 495–499
https://doi.org/10.1016/S0928-4931(02)00278-3
8 van den Burg B. Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 2003, 6(3): 213–218
https://doi.org/10.1016/S1369-5274(03)00060-2 pmid: 12831896
9 Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews, 1999, 63(4): 735–750
pmid: 10585964
10 Grant W D, Mwatha W E, Jones B E. Alkaliphiles: ecology, diversity and applications. FEMS Microbiology Letters, 1990, 75(2–3): 255–269
https://doi.org/10.1111/j.1574-6968.1990.tb04099.x
11 Demirjian D C, Morís-Varas F, Cassidy C S. Enzymes from extremophiles. Current Opinion in Chemical Biology, 2001, 5(2): 144–151
https://doi.org/10.1016/S1367-5931(00)00183-6 pmid: 11282340
12 Meek C S, Lipman C B. The relation of the reactions of the salt concentration of the medium to nitrifying bacteria. Journal of General Physiology, 1922, 5(2): 195–204
https://doi.org/10.1085/jgp.5.2.195 pmid: 19871988
13 Vedder A. Bacillus alcalophilus nov. sp. benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leevenhoek. Journal of Microbiology Serology, 1934, 1: 141–147
14 Horikoshi K. Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus No. 221. Agricultural and Biological Chemistry, 1971, 36(9): 1407–1414
https://doi.org/10.1271/bbb1961.35.1407
15 Yang Y X, Wu Q Y, Chen R S. Growth of algae in silica sol and the selection of algaecide. Journal of Nanjing University, 1989, 25(3): 92–97 (in Chinese)
16 Chen G Y, Chen J. Stability of acid silica sol and the microorganisms in silica sol. China Inorganic Salt (special issue), 2006, 25–28 (in Chinese)
17 Zhao B, He S J. Microbiology Experiment. China: Science press, 2003, 145–152 (in Chinese)
18 Rath A C, Carr C J, Graham B R. Characterization of metarhizium anisopliae strains by carbohydrate utilization (API 50 CH). Journal of Invertebrate Pathology, 1995, 65(2): 152–161
https://doi.org/10.1006/jipa.1995.1023
19 Liu S N. Clone and expression of pediocin pedA gene from pediococcus acidilactici. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2009, 29–30 (in Chinese)
20 Ma C C, Zheng D M. Manufacture and application of silica sols. Shandong Chemical Industry, 2008, 37(5): 26–29 (in Chinese)
21 Besbes M, Fakhfakh N, Benzina M. Characterization of silica gel prepared by using sol-gel process. Physics Procedia, 2009, 2(3): 1087–1095
https://doi.org/10.1016/j.phpro.2009.11.067
22 Tang Y L. An overview on manufacture methods of the silica sols. Zhejiang Chemical Industry, 2003, 34(5): 4–6 (in Chinese)
23 Kaide A, Saeki T. Development of preparation method to control silica sol-gel synthesis with rheological and morphological measurements. Advanced Powder Technology, 2014, 25(2): 773–779
https://doi.org/10.1016/j.apt.2013.11.010
24 Jeswani H, Mukherji S. Batch studies with Exiguobacterium aurantiacum degrading structurally diverse organic compounds and its potential for treatment of biomass gasification wastewater. International Biodeterioration & Biodegradation, 2013, 80: 1–9
https://doi.org/10.1016/j.ibiod.2013.02.002
25 Mohanty G, Mukherji S. Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. International Biodeterioration & Biodegradation, 2008, 61(3): 240–250
https://doi.org/10.1016/j.ibiod.2007.06.011
26 Kulshreshtha N M, Kumar A, Dhall P, Gupta S, Bisht G, Pasha S, Singh V P, Kumar R. Neutralization of alkaline industrial wastewaters using Exiguobacterium sp. International Biodeterioration & Biodegradation, 2010, 64(3): 191–196
https://doi.org/10.1016/j.ibiod.2010.01.003
27 Jiang X, Xue Y, Wang A, Wang L, Zhang G, Zeng Q, Yu B, Ma Y. Efficient production of polymer-grade L-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresource Technology, 2013, 143: 665–668
https://doi.org/10.1016/j.biortech.2013.06.049 pmid: 23838203
28 Nowicka D, Ginter-Kramarczyk D, Holderna-Odachowska A, Budnik I, Kaczorek E, Lukaszewski Z. Biodegradation of oxyethylated fatty alcohols by bacteria Microbacterium strain E19. Ecotoxicology and Environmental Safety, 2013, 91: 32–38
https://doi.org/10.1016/j.ecoenv.2013.01.005 pmid: 23395454
29 Zhang D, Li W, Huang X, Qin W, Liu M. Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13. Bioresource Technology, 2013, 137: 147–152
https://doi.org/10.1016/j.biortech.2013.03.094 pmid: 23584414
30 Koma D, Hasumi F, Yamamoto E, Ohta T, Chung S Y, Kubo M. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. Journal of Bioscience and Bioengineering, 2001, 91(1): 94–96
https://doi.org/10.1016/S1389-1723(01)80120-1 pmid: 16232955
31 Liu Y J, Zhang A N, Wang X C. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochemical Engineering Journal, 2009, 44(2–3): 187–192
https://doi.org/10.1016/j.bej.2008.12.001
32 G?ttsching A, Schmidt S. Productive degradation of the biocide benzylbenzoate by Acinetobacter sp. strain AG1 isolated from the River Elbe. Research in Microbiology, 2007, 158(3): 251–257
https://doi.org/10.1016/j.resmic.2006.12.003 pmid: 17320356
33 Anil Kumar P, Aravind R, Francis K, Bhumika V, Ritika C, Priyashanth P, Srinivas T N R. Shivajiella indica gen. nov., sp. nov., a marine bacterium of the family “Cyclobacteriaceae” with nitrate reducing activity. Systematic and Applied Microbiology, 2012, 35(5): 320–325
https://doi.org/10.1016/j.syapm.2012.04.004 pmid: 22647459
34 Kumar P A, Bhumika V, Ritika C, Bhaskar Y V, Priyashanth P, Aravind R, Bindu E, Srinivas T N R. Algoriphagus shivajiensis sp. nov., isolated from Cochin back water, India. Systematic and Applied Microbiology, 2013, 36(2): 106–111
https://doi.org/10.1016/j.syapm.2012.11.006 pmid: 23332681
35 Gao S, Seo J S, Wang J, Keum Y S, Li J, Li Q X. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. International Biodeterioration & Biodegradation, 2013, 79: 98–104
https://doi.org/10.1016/j.ibiod.2013.01.012 pmid: 23539472
36 Kanekar P P, Nilegaonkar S S, Sarnaik S S, Kelkar A S. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technology, 2002, 85(1): 87–93
https://doi.org/10.1016/S0960-8524(02)00018-4 pmid: 12146649
37 Kohli N, Sahoo D K. A novel organic solvent-stable alkaline protease from newly isolated Stenotrophomonas maltophilia: production, purification and characterization. Journal of Biotechnology, 2010, 150(1): S362
https://doi.org/10.1016/j.jbiotec.2010.09.422
38 Lee S H, Chung C W, Yu Y J, Rhee Y H. Effect of alkaline protease-producing Exiguobacterium sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge. Bioresource Technology, 2009, 100(20): 4597–4603
https://doi.org/10.1016/j.biortech.2009.04.056 pmid: 19467863
39 Shi H, Cui Q, Deng H H, Zhou Z J, Han Y. Optimization of alkaline protease-producing Exiguobacterium aurantiacum on medium compositions and fermentation process. Science and Technology of Food Industry, 2012, 33(18): 205–213
40 Roberta C S, Thys R, Guzzon S, Cladera-Olivera F, Brandelli A. Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochemistry, 2006, 41(1): 67–73
https://doi.org/10.1016/j.procbio.2005.03.070
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed