Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (3) : 340-345    https://doi.org/10.1007/s11705-014-1438-6
RESEARCH ARTICLE
CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2
Yixiu WANG1,Chao LI1,Fanchao MENG1,Shuling LV1,Jintao GUO1,Xiaoqin LIU1,Chongqing WANG2,Zhengfei MA1,2,*()
1. College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
 Download: PDF(607 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A CuAlCl4 doped metal organic framework, CuAlCl4@MIL-101, was prepared by introducing CuAlCl4 into the pores of MIL-101 for the selective adsorption of CO over N2. The CuAlCl4 molecules were evenly distributed into various pores sizes and did not change the intrinsic structure of the MIL-101. Isotherms for CO and N2 adsorption at 298 K showed that the CO capacity on CuAlCl4@MIL-101 was much higher than that on virgin MIL-101, whereas the N2 capacity decreased. The selectivity for CO over N2 improved from 4.64 to 31.5 at 298 K and 1 bar. The CuAlCl4@MIL-101 adsorbent displayed outstanding CO adsorption stability and the adsorbent could be regenerated by applying a simple vacuum of 4 mmHg.

Keywords metal organic framework      CO adsorbent      high stability      high selectivity      CuAlCl4     
Corresponding Author(s): Zhengfei MA   
Online First Date: 25 September 2014    Issue Date: 11 October 2014
 Cite this article:   
Yixiu WANG,Chao LI,Fanchao MENG, et al. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2[J]. Front. Chem. Sci. Eng., 2014, 8(3): 340-345.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1438-6
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I3/340
Fig.1  Influence of Cu loading on CO adsorption capacity at 298?K and 1 bar
Fig.2  XRD patterns of MIL-101 and CuAlCl4@MIL-101
Fig.3  FTIR patterns of MIL-101 and CuAlCl4@MIL-101
Fig.4  N2 adsorption isotherms at 77 K of MIL-101 and CuAlCl4@MIL-101
Fig.5  NLDFT analysis of (a) virgin MIL-101 and (b) CuAlCl4@MIL-101
SampleSBETb /(m2·g-1)SLangmuir /(m2·g-1)Vpore /(cm3·g-1)MesoporousMicroporous
SBETb /(m2·g-1)Vpore /(m2·g-1)SBETb /(m2·g-1)Vpore /(m2·g-1)
MIL-1013788.35098.01.7586143.190.18593645.11.5727
CuAlCl4@MIL-101a2390.73622.61.1540111.570.12062279.11.0434
Tab.1  The physical parameters of MIL-101 and CuAlCl4@MIL-101
Fig.6  CO and N2 adsorption isotherms on virgin MIL-101 and CuAlCl4@MIL-101 at 298 K
Fig.7  CO adsorption and desorption isotherms of CuAlCl4@MIL-101 at 298 K
Fig.8  Five CO adsorption regeneration cycles
Fig.9  Adsorption uptake of CO on CuAlCl4@MIL-101 at 298 K over time
1 Singh B, Saxena A, Srivastava A K, Vijayaraghavan R. Impregnated carbon based catalyst for protection against carbon monoxide gas. Applied Catalysis B: Environmental, 2009, 88(3–4): 257–262
2 Saha D, Deng S. Adsorption equilibria and kinetics of carbon monoxide on zeolite 5?, 13X, MOF-5, and MOF-177. Journal of Chemical & Engineering Data, 2009, 54(8): 2245–2250
3 Xie Y C, Zhang J P, Qiu J G, Tong X Z, Fu J P, Yang G, Yan H J, Tang Y Q. Zeolites modified by CuCl for separating CO from gas mixtures containing CO2. Adsorption-Journal of the International Adsorption Society, 1996, 3(1): 27–32
4 Noyes W. Military problems with aerosols and nonpersistent gases. National Defence Research Committee report division, 1946, 10
5 Beebe R A, Wildner E L. The heat of adsorption of carbon monoxide on copper I. Journal of the American Chemical Society, 1934, 56(3): 642–645
6 Kohl A, Riesenfeld F. Gas Purification. Texas: Gulf Publishing Company, 1985
7 Hogendoorn J A, Vanswaaij W P M, Versteeg G F. The absorption of carbon-monoxide in cosrb solutions—absorption rate and capacity. Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 243–252
8 Keyworth D A, Haase D J, Walker D G, Turnbo R G. Low-cost carbon-monoxide using COSORB process. Abstracts of Papers of the American Chemical Society, 1978, 175(Mar): 66–66
9 Kasuya F, Tsuji T. High purity CO gas separation by pressure swing adsorption. Gas Separation & Purification, 1991, 5(4): 242–246
10 Yokoe J, Taki K, Aokata T T T, Kida M, Kasuya F. High-purity CO gas separation system by pressure swing adsorption method. In: Gas Separation Technology: Proceedings of the International Symposium on Gas Separation Technology
11 Hirai H, Komiyama M, Wada K. Active carbon-supported aluminum copper chloride as water-resistant carbon-monoxide adsorbent. Chemistry Letters, 1982, 7: 1025–1028
12 Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
13 Wang X, Li H, Hou X J. Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO. Journal of Physical Chemistry C, 2012, 116(37): 19814–19821
14 Yang J F, Zhao Q, Li J P, Dong J X. Synthesis of metal-organic framework MIL-101 in TMAOH-Cr(NO3)(3)-H2BDC-H2O and its hydrogen-storage behavior. Microporous and Mesoporous Materials, 2010, 130(1–3): 174–179
15 Hong D Y, Hwang Y K, Serre C, Ferey G, Chang J S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Advanced Functional Materials, 2009, 19(10): 1537–1552
16 Hwang Y K, Hong D Y, Chang J S, Jung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Ferey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 2008, 47(22): 4144–4148
17 Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101. Chemical Communications, 2008, 35: 4192–4194
18 Xiang Z H, Hu Z, Yang W T, Cao D P. Lithium doping on metal-organic frameworks for enhancing H-2 Storage. International Journal of Hydrogen Energy, 2012, 37(1): 946–950
[1] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[2] Yueqing Wang, Jintao Zhang. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(4): 838-854.
[3] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed