Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (1) : 72-88    https://doi.org/10.1007/s11705-016-1580-4
RESEARCH ARTICLE
Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003
Hui Wan1,Yu Xia1,Jianghua Li1,2,Zhen Kang1,2,Jingwen Zhou1,2()
1. School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
2. Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
 Download: PDF(418 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pyrroloquinoline quinone (PQQ) plays a significant role as a redox cofactor in combination with dehydrogenases in bacteria. These dehydrogenases play key roles in the oxidation of important substrates for the biotechnology industry, such as vitamin C production. While biosynthesis of PQQ genes has been widely studied, PQQ-transport mechanisms remain unclear. Herein, we used both two-dimensional fluorescence-difference gel electrophoresis tandem mass spectrometry and RNA sequencing to investigate the effects of pqqB overexpression in an industrial strain of Gluconobacter oxydans WSH-003. We have identified 73 differentially expressed proteins and 99 differentially expressed genes, a majority of which are related to oxidation-reduction and transport processes by gene ontology analysis. We also described several putative candidate effectors that responded to increased PQQ levels resulting from pqqB overexpression. Furthermore, quantitative PCR was used to verify five putative PQQ-transport genes among different PQQ producing strains, and the results showed that ompW, B932_1930 and B932_2186 were upregulated in all conditions. Then the three genes were over-expressed in G. oxydans WSH-003 and PQQ production were detected. The results showed that extracellular PQQ of B932_1930 (a transporter) and B932_2186 (an ABC transporter permease) overexpression strains were enhanced by 1.77-fold and 1.67-fold, respectively. The results suggest that the proteins encoded by PqqB, B932_1930 and B932_2186 might enhance the PQQ secretion process.

Keywords 2D-DIGE      pqqB      pyrroloquinoline quinone      RNA-Seq      Vitamin C     
Corresponding Author(s): Jingwen Zhou   
Just Accepted Date: 13 July 2016   Online First Date: 18 September 2016    Issue Date: 17 March 2017
 Cite this article:   
Hui Wan,Yu Xia,Jianghua Li, et al. Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003[J]. Front. Chem. Sci. Eng., 2017, 11(1): 72-88.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1580-4
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I1/72
Fig.1  The operon encoding PQQ biosynthesis in G. oxydans. Genes encoding PQQ biosynthesis are composed of pqqA/B/C/D/E in G. oxydans. PqqA provides the amino acids glutamate and tyrosine for constructing the PQQ backbone. PqqB may indirectly transport PQQ and plays a role as an oxygenase in the course of converting peptide PqqA to PQQ. The PqqC protein plays a crucial role in the final step of PQQ synthesis. PqqD is a novel peptide chaperone that interacts with PqqE, which is an S-adenosyl-L-methionine (SAM) superfamily protein proposed to catalyze C?C bond formation between glutamate and tyrosine
Primer Sequence (5′-3′) Restriction site
tufB-F CCCAAGCTTGCATCGTTTACGGTGCTCT HindIII
tufB-R CGGGGTTTTGGAGAAAGACGATGATTGATGTCATCGTGCTC
pqqB-F CGGGGTTTTGGAGAAAGACGATGATTGATGTCATCGTGCTC
pqqB-R1 CGCGGATCCTCATGGTGTTTCCAGTCTGA BamHI
tufB-R1 CGGGGTTTTGGAGAAAGACGATGATTGATGTCATCGTGCTC
ompW-F GCAGGGTTTTGGAGATAGACGATGAAGACGTCCGCTCTCGC
ompW-R2 CCCCCGGGGGGTCAGAAACGATATTCAATAC SmaI
tufB-R2 GCGAGAGCGGACGTCTTCATCGTCTATCTCCAAAACCCTGC
B932_1930-F GCAGGGTTTTGGAGATAGACGTTGATCATGACACGGACGCC
B932_1930-R3 GGAATTCCTTAATGAAGCGTTCTGCCTG EcoRI
tufB-R3 GGCGTCCGTGTCATGATCAACGTCTATCTCCAAAACCCTGC
B932_2186-F GCAGGGTTTTGGAGATAGACGATGAAAAGCCTGGCTGACAT
B932_2186-R4 GGAATTCCTCAGGCAACTGACTTAACCG EcoRI
tufB-R4 ATGTCAGCCAGGCTTTTCATCGTCTATCTCCAAAACCCTGC
Tab.1  Primers used in overexpression of genes
Gene name Forward-primer sequence (5′-3′) Anti-primer sequence (5′-3′)
16S GCGGTTGTTACAGTCAGATG GCCTCAGCGTCAGTATCG
adhP AGTGGATGGCTATTTCAG CTTGTCGTCGTCAATATC
B932_0029 GCTGGCAAGAGTTATATC TTAGTGATTGTGGTGATG
cyoB ATCTTCAACTGGCTGTTC CATACCACCAATGGAGAA
cyoC CAGCGGATGATGGACAAG TCACACCTGCGAGATAGA
etfA CTAGCGGAAAGAACATTC GTAGATTGGACGAACGAA
groEL TTAAGAAGAACAGCAAGAAG ATCGCAGAAGAGATCATC
B932_1288 TTGGAGAGGTGAAGGATA GCCAGATAACGGACATAT
ompW AACTGGTTCTTCAATTTC AGAAACGATATTCAATACC
B932_0755 GCCGATCTGAAACTTATACC ATTCCGTTCTAGCTGACA
B932_2186 GCGAACGCCCAGATGAAT GAAGGAGCCAATGCCAATGA
B932_1930 AATCCAGACTGTTCAGAA CCATACAATCCGAAATCA
ompA GTTGAAGTTGAGGGTGTAT TTGACGAAACCGCCATAA
pqqB ACTGGTTTGTTCTCAATG AGGATAACACTCTGGATT
sldB AAAGTCCATCCTCTCATC GGCTGAACTAAACTCTTT
xdh-F GTGAAGGCAGAATCGTATG CGGCATTATTGAACAGGAA
pqqA TTGGAACACGCCGAAAGT TACTTCTTCTCGCCGCAGA
Tab.2  Primers used for qPCR
Fig.2  Comparison of intracellular and extracellular PQQs among different G. oxydans recombinant strains. After cells reached the stationary phase (48 h), intracellular and extracellular PQQ levels were determined. WT: wild type strain; ET: pBBR1MCS-2-tufB strain; TB: pBBR1MCS-2-tufB-pqqB strain; TA: pBBR1MCS-2-tufB-pqqA strain; TP: pGUC-k0203-GS-k0095-pqqABCDE strain; TW: pBBR1MCS-2-tufB-ompW strain; T1930: pBBR1MCS-2-tufB-B932_1930 strain; T2186: pBBR1MCS-2-tufB-B932_2186 strain
Map to gene ETa) TBb)
Reads number Percentage/% Reads number Percentage/%
Total reads 21570688 100 6293098 100
Clean reads 21506054 99.6 6268022 99.7
Tab.3  Alignment statistics of total RNA-Seq results
Fig.3  FPKM distributions in the G. oxydans ET and TB strains based on RNA-Seq analysis. The scatterplots were generated by cummeRbund v2.0 and R v3.0 following analysis of RNA-Seq data. After cells reached the exponential phase (12 h), total RNA was extracted and correlations between transcript expression levels detected by MiSeq. FPKM values of moderately expressed genes ranged from 100 to 500, with the average at ~300. ET: pBBR1MCS-2-tufB strain; TB: pBBR1MCS-2-tufB-pqqB strain
Fig.4  Comparative proteomics analysis between G. oxydans ET and TB strains using 2D-DIGE-MS. (a) 2D-DIGE overlay map of membrane proteins; (b) 2D-DIGE overlay map of intracellular proteins; (c) Distribution map of differentially expressed membrane proteins; (d) Distribution map of differentially expressed intracellular proteins. 2D-DIGE images were labeled with Cy2 (blue for all samples), Cy3 (green, ET), and Cy5 (red, TB). A total of 73 differentially expressed proteins were identified by MALDI-TOF- MS/MS analysis
Fig.5  Categorization of GO terms based on differentially expressed genes and proteins. Differentially expressed genes and proteins were classified into three GO categories: cellular component, molecular function, and biological process. The Y-axis indicates the different GO terms, and the X-axis indicates the number of genes or proteins in a category. Grey: differentially expressed genes determined by RNA-Seq analysis; Black: differentially expressed proteins determined by 2D-DIGE analysis
Fig.6  Categorization of biological process terms based on differentially expressed genes and proteins. All differentially expressed genes and proteins were first mapped to GO terms in the database (http://www.geneontology.org/). From all gene and protein data, 79.6% were annotated and classified with GO terms by filtering node scores<5. The top five terms were: cellular nitrogen compound metabolic process, small molecule metabolic process, oxidation-reduction process, and translation, transmembrane transport
Fig.7  Transcription levels of genes-of-interest based on qPCR. The X-axis indicates the genes-of-interest, and the Y-axis indicates the fold change between G. oxydans ET and TB strains. ET strain was used for the control. Error bars represent deviation in results from experiments performed in triplicate. Expression of 16S RNA was used as an internal control
Fig.8  Transcription levels of putative PQQ-transport genes based on qPCR. The X-axis indicates the five putative PQQ-transport genes, while the Y-axis indicates the fold change between G. oxydans ET, TB, TA and TP strains. ET strain was used as the control. Error bars represent deviation in results from experiments performed in triplicate. Expression of 16S rRNA was used as an internal control. ET: pBBR1MCS-2-tufB strain; TB: pBBR1MCS-2-tufB-pqqB strain; TA: pBBR1MCS-2-tufB-pqqA strain; TP: pGUC-k0203-GS-k0095-pqqABCDE strain
Fig.9  SDS-PAGE analysis of putative PQQ-transport proteins overexpression. All the mass of overexpression proteins were the same as the theory value. Lane M: mass of standard protein; lane 1: global proteins of pBBR1MCS-2-tufB (ET) strain; lane 2: global proteins of pBBR1MCS-2-tufB-B932_2186 (T2186) strain; lane 3: global proteins of pBBR1MCS-2-tufB-B932_1930 (T1930) strain; lane 4: global proteins of pBBR1MCS-2-tufB-ompW (TW) strain
Gene IDProtein definitionGene nameFold change TB/ETp-value
RNA-Seq2D-DIGE
Metabolic process
B932_0165Exodeoxyribonuclease III0.450.00015
B932_01882-isopropylmalate synthase1.860.0086
B932_0238DapDdapD2.930.0016
B932_0280Acetyl-CoA carboxylase carboxyltransferase subunit alphaaccA0.460.0027
B932_0287Carbonic anhydrase 1cynT2.450.0058
B932_03256-phosphogluconate dehydrogenase-like protein2.040.00115
B932_0326Bifunctional transaldolase/phosphoglucose isomerase2.110.00525
B932_0327TransketolasetktA0.350.0038
B932_0356Peptidyl-prolyl cis-trans isomerase precursorppiC0.50.00033
B932_0357Glutamate N-acetyltransferase / amino-acid N-acetyltransferaseargJ1.840.00048
B932_0447PLP dependent proteinyggS1.720.0155
B932_0456Polynucleotide phosphorylasepnp0.530.0011
B932_0522GlpXglpX0.180.0082
B932_0624Lipid A biosynthesis acyltransferase0.640.0495
B932_0718Thioredoxin1.640.03165
B932_0982Pyrroline-5-carboxylate reductaseproC1.630.00015
B932_0988Lipopolysaccharide modification acyltransferase0.660.04825
B932_1020Glutamine synthetaseglnA1.750.00042
B932_1090Glucose-1-phosphate thymidylyltransferaserfbA0.430.00055
B932_1110Phosphatase2.360.00055
B932_1236Phosphoadenosine phosphosulfate reductase1.990.02345
B932_1314Fructose-1,6-bisphosphate aldolasealdO1.80.0069
B932_1399Radical SAM protein0.590.0399
B932_1406Fructose-bisphosphate aldolasefbaA0.520.018
B932_1409Nitrogen fixing thioredoxin-like protein NifUnifU0.320.00017
B932_1590Phosphoglycerate kinasepgk6.420.00014
B932_1622Acetyltransferase domain protein0.520.00805
B932_1626Acn5 family acetyltransferase0.60.0417
B932_1705Adenylosuccinate synthetasepurA0.230.00018
B932_2067Carbamoyl phosphate synthase small subunit1.70.01385
B932_2122ATP-dependent protease peptidase subunit2.130.00015
B932_2143DimethylallyltransferaseispA0.270.0009
B932_2481UTP-glucose-1-phosphate uridylyltransferasegalU0.530.00036
B932_2542Alpha-amino acid ester hydrolase0.630.0083
B932_2586Lytic transglycosylase0.520.00185
B932_2711Indole-3-glycerol phosphate synthasetrpC0.380.00038
B932_3232Methionine aminopeptidase0.640.03705
B932_34803-oxoacyl-ACP reductasefabG0.380.00024
Oxidation-reduction process
B932_1311ACP phosphodiesteraseacpD0.510.0049
B932_2072NAD-dependent alcohol dehydrogenaseadh2.565.0E-05
B932_2071Alcohol dehydrogenaseadhP1.50.04995
B932_0068Cytochrome o ubiquinol oxidase subunit IcyoB1.680.04455
B932_0067Cytochrome o ubiquinol oxidase subunit IIIcyoC1.610.04395
B932_1063Putative cytochrome c-5532.140.00075
B932_1302Electron transfer flavoprotein subunit alphaetfA17.370.0088
B932_1062NADP-dependent sorbitol dehydrogenaseexaA0.340.0049
B932_0993Putative NAD-dependent aldehyde dehydrogenasegabD1.550.00082
B932_1321Quinoprotein glucose dehydrogenasegcd0.120.0041
B932_1312Flavohemoproteinhmp0.620.02435
B932_1684L-sorbose reductasemtlK0.520.00049
B932_2075NAD(P) transhydrogenase subunit alphapntA1.710.0016
B932_1092dTDP-4-dehydrorhamnose reductaserfbD0.450.0064
B932_0665L-sorbosone dehydrogenase, NAD(P) dependentsld1.640.0207
B932_3025Large subunit of sorbitol dehydrogenasesldA1.990.0142
B932_3024Small subunit of sorbitol dehydrogenasesldB1.692.350.0223
B932_0875NAD-dependent xylitol dehydrogenasexdh1.80.04175
B932_1308Xylitol dehydrogenasexdh1.662.090.0147
B932_0372Bacterioferritin comigratory protein0.480.00345
B932_1338Putative antibiotic biosynthesis monooxygenase0.590.00031
B932_1552Oxidoreductase0.260.004
B932_2352Putative Zn-dependent oxidoreductase1.970.0084
Transport
B932_0284Outer membrane proteinompA1.420.0094
B932_0205Iron complex outermembrane receptor protein1.770.00805
B932_0274Outer membrane protein0.630.0276
B932_0755Membrane protein1.920.0366
B932_0768Ferrous iron transport protein A (FeoA)feoA1.70.03825
B932_0797ATP synthase F0F1 subunit betaatpD2.130.0038
B932_0799ATP synthase F0F1 subunit alphaatpA1.730.001
B932_0800ATP synthase subunit deltaatpH0.120.0057
B932_0804Protein translocase subunit SecEsecE1.750.008
B932_0839Energy transducer1.570.0315
B932_0965GTP-binding protein YchFychF0.320.0023
B932_1170PqqB proteinpqqB16.854.45.0E-05
B932_1188Outer membrane protein OmpWompW1.80.0014
B932_1815Nickel ABC transporter substrate-binding proteincbiK0.490.0172
B932_1930Transporter2.010.0087
B932_1932Molybdenum-pterin-binding proteinmop2.130.0252
B932_1943Outer membrane protein0.440.00075
B932_1944Outer membrane protein0.620.04455
B932_2186ABC transporter permease2.120.0452
B932_2253Sodium/proton antiporter nhaAnhaA0.480.00055
B932_2423ABC transporter ATP-binding proteinsufC0.420.011
B932_2846Periplasmic sorbitol binding protein1.60.02695
B932_3091Outer membrane protein0.620.02435
B932_3210D-methionine ABC transporter permease metImetI0.570.02105
Translation and refolding
B932_199350S ribosomal protein L7/L12rplL1.640.0063
B932_202250S ribosomal protein L15rplO0.320.00011
B932_024550S ribosomal protein L34PrpmH1.580.03065
B932_063630S ribosomal protein S1rpsA0.580.0027
B932_244730S ribosomal protein S2rpsB4.350.00097
B932_202030S ribosomal protein S5rpsE0.340.00074
B932_200730S ribosomal protein S19rpsS1.530.04425
B932_2397RpsUrpsU1.710.02405
B932_1721ATP-dependent Clp protease, ATP-binding subunit ClpBclpB0.480.00041
B932_2435ATP-dependent Clp protease proteolytic subunitclpP1.510.0059
B932_0649ATP-dependent Clp protease adaptor protein ClpSclpS1.830.00615
B932_2158Elongation factor Pefp2.450.0081
B932_2415Elongation factor Gefg2.440.002
B932_0080Molecular chaperone GroESgroES1.880.0028
B932_0079Molecular chaperone GroELgroEL1.771.760.0198
B932_1318Molecular chaperone DnaKdnaK0.260.0072
B932_2574Molecular chaperone IbpAibpA1.560.03285
B932_2000Elongation factor TutufM36.590.035
B932_2466Transcriptional regulator cold shock proteincspA1.750.00022
B932_1358Translation initiation factor IF-3infC8.860.00035
B932_2183Translation repressor0.580.0328
B932_2222Translation repressor2.240.0033
Transcription and signal transduction
B932_0462Transcription termination factor NusAnusA0.590.045
B932_1032MarR family transcriptional regulator0.640.03695
B932_1731Plasmid maintenance system antidote protein, XRE family1.790.02025
B932_1810RNA polymerase sigma factor, sigma-70 family protein3.160.00945
B932_1389Serine protease2.430.0001
B932_2351Transcriptional regulator2.140.0038
B932_3161Transposase1.630.0276
B932_3162Transposase1.650.01615
B932_0672Transposase1.660.03855
B932_1744Transposase1.720.0093
Response to stress
B932_3533Osmotically inducible protein OsmCosmC0.420.00044
B932_0307Linocin M18 bacteriocin protein3.750.00025
B932_0530Damage-inducible protein0.530.00425
B932_2602Damage-inducible protein0.520.00315
Motility
B932_0422Selw selh selenoprotein1.670.01395
B932_1211Flagellar basal body rod protein FlgGflgG5.190.0064
B932_1143Flagellar hook-associated protein 1 FlgKflgK2.750.00055
B932_0694Bacteriophage tail fiber partial2.210.0266
Unfiled
B932_3010Dinucleotide-binding enzyme2.360.0018
B932_1634Ribonuclease h0.415.0E-05
B932_2418Carboxypeptidase-like protein0.580.0017
B932_0630Zinc proteasepqqL0.450.0072
B932_0472?Tricorn protease-like proteintri0.460.0019
B932_2220Single peptide protein0.510.00385
B932_3007Peptidase partial0.550.0135
B932_1771Helix-turn-helix domain-containing protein1.920.0254
Hypothetical protein
B932_0014Hypothetical protein2.680.0234
B932_0185Hypothetical protein0.560.0202
B932_0029Hypothetical protein0.490.30.0016
B932_0084Hypothetical protein0.480.0014
B932_0099Hypothetical protein0.480.0014
B932_0166Hypothetical protein1.70.0008
B932_0190Hypothetical protein0.570.001
B932_0208Hypothetical protein0.30.018
B932_0373Hypothetical protein0.490.000095
B932_0463Hypothetical protein0.160.00016
B932_0542Hypothetical protein0.640.03
B932_0554Hypothetical protein0.450.00015
B932_0678Hypothetical protein0.60.01465
B932_0679Hypothetical protein0.570.0089
B932_0685Hypothetical protein0.580.008
B932_0801Hypothetical protein0.530.00265
B932_0834Hypothetical protein0.550.0283
B932_1053Hypothetical protein0.640.04095
B932_1053Hypothetical protein0.570.0094
B932_1056Hypothetical protein0.60.01595
B932_1139Hypothetical protein1.530.0496
B932_1216Hypothetical protein1.920.02
B932_1288Hypothetical protein1.640.02015
B932_1712Hypothetical protein3.10.0152
B932_2348Hypothetical protein1.770.0118
B932_2350Hypothetical protein2.365.0E-05
B932_2362Hypothetical protein3.310.0113
B932_2483Hypothetical protein2.380.03095
B932_2563Hypothetical protein2.150.0045
B932_2935Hypothetical protein2.780.0119
B932_3243Hypothetical protein1.560.034
B932_3344Hypothetical protein2.670.01475
B932_3475Hypothetical protein5.180.0384
B932_3482Hypothetical protein1.520.0438
Tab.1  Table A The biological process categories of DEGs and DEPs
1 Kasahara T, Kato T. A new redox-cofactor vitamin for mammals. Nature, 2003, 422(6934): 832
https://doi.org/10.1038/422832a
2 Goodwin P M, Anthony C. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Advances in Microbial Physiology, 1998, 40: 1–80
https://doi.org/10.1016/S0065-2911(08)60129-0
3 Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic-acid bacteria. Advances in Microbial Physiology, 1994, 36: 247–301
https://doi.org/10.1016/S0065-2911(08)60181-2
4 Sashidhar B, Podile A R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology, 2010, 109(1): 1–12
5 Zhou Y L, Dong H, Liu L T, Hao Y Q, Chang Z, Xu M T. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosensors & Bioelectronics, 2015, 64: 442–448
https://doi.org/10.1016/j.bios.2014.09.058
6 Bauerly K, Harris C, Chowanadisai W, Graham J, Havel P J, Tchaparian E, Satre M, Karliner J S, Rucker R B. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One, 2011, 6(7): e21779
https://doi.org/10.1371/journal.pone.0021779
7 Kumar N, Kar A. Pyrroloquinoline quinone ameliorates oxidative stress and lipid peroxidation in the brain of streptozotocin-induced diabetic mice. Canadian Journal of Physiology and Pharmacology, 2015, 93(1): 71–79
https://doi.org/10.1139/cjpp-2014-0270
8 Kimura K, Takada M, Ishii T, Tsuji-Naito K, Akagawa M. Pyrroloquinoline quinone stimulates epithelial cell proliferation by activating epidermal growth factor receptor through redox cycling. Free Radical Biology & Medicine, 2012, 53(6): 1239–1251
https://doi.org/10.1016/j.freeradbiomed.2012.07.015
9 Misra H S, Rajpurohit Y S, Khairnar N P. Pyrroloquinoline-quinone and its versatile roles in biological processes. Journal of Biosciences, 2012, 37(2): 313–325
https://doi.org/10.1007/s12038-012-9195-5
10 Houck D R, Hanners J L, Unkefer C J, van Kleef M A G, Duine J A. PQQ: Biosynthetic studies in Methylobacterium AM1 and Hyphomicrobium X using specific 13C labeling and NMR. Antonie van Leeuwenhoek, 1989, 56(1): 93–101
https://doi.org/10.1007/BF00822589
11 Li L, Jiao Z W, Hale L, Wu W L, Guo Y B. Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2. PLoS One, 2014, 9(12): 16
12 Hölscher T, Görisch H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology, 2006, 188(21): 7668–7676
https://doi.org/10.1128/JB.01009-06
13 Wecksler S R, Stoll S, Iavarone A T, Imsand E M, Tran H, Britt R D, Klinman J P. Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chemical Communications, 2010, 46(37): 7031–7033
https://doi.org/10.1039/c0cc00968g
14 Yang X P, Zhong G F, Lin J P, Mao D B, Wei D Z. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. Journal of Industrial Microbiology & Biotechnology, 2010, 37(6): 575–580
https://doi.org/10.1007/s10295-010-0703-z
15 Velterop J S, Sellink E, Meulenberg J J, David S, Bulder I. Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. Journal of Bacteriology, 1995, 177: 5088–5098
16 Puehringer S, Metlitzky M, Schwarzenbacher R. The pyrroloquinoline quinone biosynthesis pathway revisited: A structural approach. BMC Biochemistry, 2008, 9(1): 8
https://doi.org/10.1186/1471-2091-9-8
17 Shen Y Q, Bonnot F, Imsand E M, RoseFigura J M, Sjölander K, Klinman J P. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry, 2012, 51(11): 2265–2275
https://doi.org/10.1021/bi201763d
18 Klinman J P, Bonnot F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chemical Reviews, 2014, 114(8): 4343–4365
https://doi.org/10.1021/cr400475g
19 Gao L L, Hu Y D, Liu J, Du G C, Zhou J W, Chen J. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Metabolic Engineering, 2014, 24: 30–37
https://doi.org/10.1016/j.ymben.2014.04.003
20 Xu S, Wang X B, Du G C, Zhou J W, Chen J. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microbial Cell Factories, 2014, 13(1): 1–7
https://doi.org/10.1186/s12934-014-0146-8
21 Gao L L, Zhou J W, Liu J, Du G C, Chen J. Draft genome sequence of Gluconobacter oxydans WSH-003, a strain that is extremely tolerant of saccharides and alditols. Journal of Bacteriology, 2012, 194(16): 4455–4456
https://doi.org/10.1128/JB.00837-12
22 Zhou J W, Du G C, Chen J. Metabolic engineering of microorganisms for vitamin C production. Sub-Cellular Biochemistry, 2012, 64: 241–259
https://doi.org/10.1007/978-94-007-5055-5_12
23 Wang X B, Liu J, Du G C, Zhou J W, Chen J. Efficient production of L-sorbose from D-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal, 2013, 77: 171–176
https://doi.org/10.1016/j.bej.2013.06.008
24 Hu Y D, Wan H, Li J, Zhou J W. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7): 1039–1047
https://doi.org/10.1007/s10295-015-1624-7
25 Kovach M E, Elzer P H, Hill D S, Robertson G T, Farris M A, Roop R M, Peterson K M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 1995, 166(1): 175–176
https://doi.org/10.1016/0378-1119(95)00584-1
26 Zhang L, Lin J P, Ma Y S, Wei D Z, Sun M. Construction of a novel shuttle vector for use in Gluconobacter oxydans. Molecular Biotechnology, 2010, 46(3): 227–233
https://doi.org/10.1007/s12033-010-9293-2
27 Geiger O, Gorisch H. Enzymatic determination of pyrroloquinoline quinone using crude membranes from Escherichia coli. Analytical Biochemistry, 1987, 164(2): 418–423
https://doi.org/10.1016/0003-2697(87)90513-6
28 Rochat T, Delumeau O, Figueroa-Bossi N, Noirot P, Bossi L, Dervyn E, Bouloc P. Tracking the elusive function of Bacillus subtilis Hfq. PLoS One, 2015, 10(4): e0124977
https://doi.org/10.1371/journal.pone.0124977
29 Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562–578
https://doi.org/10.1038/nprot.2012.016
30 Zhou J W, Wang K, Xu S, Wu J J, Liu P R, Du G C, Li J H, Chen J. Identification of membrane proteins associated with phenylpropanoid tolerance and transport in Escherichia coli BL21. Journal of Proteomics, 2015, 113: 15–28
https://doi.org/10.1016/j.jprot.2014.09.012
31 Huang C Z, Lin X M, Wu L N, Zhang D F, Liu D, Wang S Y, Peng X X. Systematic identification of the subproteome of Escherichia coli cell envelope reveals the interaction network of membrane proteins and membrane-associated peripheral proteins. Journal of Proteome Research, 2006, 5(12): 3268–3276
https://doi.org/10.1021/pr060257h
32 Wu C D, Zhang J, Chen W, Wang M, Du G C, Chen J. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Applied Microbiology and Biotechnology, 2012, 93(2): 707–722
https://doi.org/10.1007/s00253-011-3757-6
33 Götz S, García-Gómez J M, Terol J, Williams T D, Nagaraj S H, Nueda M J, Robles M, Talon M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 2008, 36(10): 3420–3435
https://doi.org/10.1093/nar/gkn176
34 Yu N Y, Wagner J R, Laird M R, Melli G, Rey S, Lo R, Dao P, Sahinalp S C, Ester M, Foster L J, Brinkman F S L. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 2010, 26(13): 1608–1615
https://doi.org/10.1093/bioinformatics/btq249
35 Zhao S H, Zhao X R, Zou H J, Fu J W, Du G C, Zhou J W, Chen J. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. Journal of Proteomics, 2014, 101: 102–112
https://doi.org/10.1016/j.jprot.2014.01.031
36 Hölscher T, Schleyer U, Merfort M, Bringer-Meyer S, Görisch H, Sahm H. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 2009, 16(1-2): 6–13
https://doi.org/10.1159/000142890
37 Klein G, Dartigalongue C, Raina S. Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Molecular Microbiology, 2003, 48(1): 269–285
https://doi.org/10.1046/j.1365-2958.2003.03449.x
38 Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annual Review of Biochemistry, 2001, 70(1): 603–647
https://doi.org/10.1146/annurev.biochem.70.1.603
39 Mogk A, Schlieker C, Friedrich K L, Schönfeld H J, Vierling E, Bukau B. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. Journal of Biological Chemistry, 2003, 278(33): 31033–31042
https://doi.org/10.1074/jbc.M303587200
40 Nakamoto H, Vigh L. The small heat shock proteins and their clients. Cellular and Molecular Life Sciences, 2007, 64(3): 294–306
https://doi.org/10.1007/s00018-006-6321-2
41 Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Letters, 1981, 130(2): 179–183
https://doi.org/10.1016/0014-5793(81)81114-3
42 Schobert M, Gorisch H. Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: Cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology, 1999, 145(2): 471–481
https://doi.org/10.1099/13500872-145-2-471
43 Peters C, Koelzsch R, Kadow M, Skalden L, Rudroff F, Mihovilovic M D, Bornscheuer U T. Identification, characterization, and application of three enoate reductases from pseudomonas putida in in vitro enzyme cascade reactions. ChemCatChem, 2014, 6(4): 1021–1027
https://doi.org/10.1002/cctc.201300957
44 Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke W F, Ehrenreich A, Gottschalk G, Deppenmeier U. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology, 2005, 23(2): 195–200
https://doi.org/10.1038/nbt1062
45 Nachin L, Loiseau L, Expert D, Barras F, Suf C. An unorthodox cytoplasmic ABC/ATPase required for Fe-S biogenesis under oxidative stress. EMBO Journal, 2003, 22(3): 427–437
https://doi.org/10.1093/emboj/cdg061
46 Romao C V, Ladakis D, Lobo S A L, Carrondo M A, Brindley A A, Deery E, Matias P M, Pickersgill R W, Saraiva L M, Warren M J. Evolution in a family of chelatases facilitated by the introduction of active site asymmetry and protein oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(1): 97–102
https://doi.org/10.1073/pnas.1014298108
47 Merlin C, Gardiner G, Durand S, Masters M. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). Journal of Bacteriology, 2002, 184(19): 5513–5517
https://doi.org/10.1128/JB.184.19.5513-5517.2002
48 Albrecht R, Zeth K, Söding J, Lupas A, Linke D. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 2006, 62(4): 415–418
https://doi.org/10.1107/S1744309106010190
49 Sun D C, Wang B, Zhu L H, Chen M Y, Zhan L L. Block and boost DNA transfer: Opposite roles of OmpA in natural and artificial transformation of Escherichia coli. PLoS One, 2013, 8(3): 8
https://doi.org/10.1371/journal.pone.0059019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed