Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (4) : 526-533    https://doi.org/10.1007/s11705-016-1590-2
RESEARCH ARTICLE
Process simulation and economic analysis of reactor systems for perfluorinated compounds abatement without HF effluent
Boreum Lee1,Sunggeun Lee1,Ho Young Jung2,Shin-Kun Ryi3(),Hankwon Lim1()
1. Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430, Korea
2. Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea
3. Korea Institute of Energy Research, Daejeon 34129, Korea
 Download: PDF(294 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

New and efficient reactor systems were proposed to treat perfluorinated compounds via catalytic decomposition. One system has a single reactor (S-1), and another has a series of reactors (S-2). Both systems are capable of producing a valuable CaF2 and eliminating toxic HF effluent and their feasibility was studied at various temperatures with a commercial process simulator, Aspen HYSYS®. They are better than the conventional system, and S-2 is better than S-1 in terms of CaF2 production, a required heat for the system, natural gas usage and CO2 emissions in a boiler, and energy consumption. Based on process simulation results, preliminary economic analysis shows that cost savings of 12.37% and 13.55% were obtained in S-2 at 589.6 and 621.4 °C compared to S-1 at 700 and 750 °C, respectively, for the same amount of CaF2 production.

Keywords perfluorinated compounds (PFCs)      CF4      process simulation      economic analysis     
Corresponding Author(s): Shin-Kun Ryi,Hankwon Lim   
Just Accepted Date: 19 August 2016   Online First Date: 13 September 2016    Issue Date: 29 November 2016
 Cite this article:   
Boreum Lee,Sunggeun Lee,Ho Young Jung, et al. Process simulation and economic analysis of reactor systems for perfluorinated compounds abatement without HF effluent[J]. Front. Chem. Sci. Eng., 2016, 10(4): 526-533.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1590-2
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I4/526
Fig.1  Experimental data for CF4 hydrolysis
Fig.2  Process flow diagram of S-1 system
Fig.3  Process flow diagram of S-2 system
Fig.4  Performance comparison in terms of CaF2 production between S-1 and S-2 systems at T = 550?750 °C
CaF2 production /(kmol·h?1) Q_required in the overall system /kW NG in a boiler /(kmol·h?1) CO2 emission from a boiler
/(kmol·h?1)
Single reactor
/750 °C
5.23 × 10?2 41.49 0.1992 0.1969
Series reactor
/750 °C
5.36 × 10?2 41.67 0.2001 0.1978
Series reactor
/700 °C
5.36 × 10?2 39.47 0.1895 0.1873
Series reactor
/650 °C
5.32 × 10?2 37.25 0.1788 0.1768
Series reactor
/600 °C
5.07 × 10?2 34.70 0.1666 0.1647
Series reactor
/621.4 °C
5.23 × 10?2 35.87 0.1722 0.1702
Tab.1  Comparative results of S-1 (Tsingle = 750 °C) and S-2 (Tseries = 600?750 °C )
CaF2 production /(kmol·h?1) Q_required in the overall system /kW NG in a boiler /(kmol·h?1) CO2 emission from a boiler
/(kmol·h?1)
Single reactor
/700 °C
4.95 × 10?2 38.88 0.1867 0.1845
Series reactor
/700 °C
5.36 × 10?2 39.47 0.1895 0.1873
Series reactor
/650 °C
5.32 × 10?2 37.25 0.1788 0.1768
Series reactor
/600 °C
5.07 × 10?2 34.70 0.1666 0.1647
Series reactor
/550 °C
4.04 × 10?2 30.88 0.1483 0.1466
Series reactor
/589.6 °C
4.95 × 10?2 34.06 0.1636 0.1617
Tab.2  Comparative results of S-1 (Tsingle = 700 °C) and S-2 (Tseries = 550?700 °C)
Fig.5  Process flow diagram of S-1 system with a heat exchanger
Fig.6  Process flow diagram of S-2 system with a heat exchanger
Heat recovery /% NG in a boiler
/(kmol·h?1)
Q_boiler
/kW
Q_HX
/kW
Energy consumption
/(kWh·Nm?3)
Single
reactor
T = 750 °C
0 0.1992 41.49 0.35
20 0.1745 36.33 5.15 0.30
40 0.1497 31.18 10.31 0.26
60 0.1250 26.03 15.46 0.22
80 0.1002 20.87 20.61 0.17
Series
Reactor
T = 621.4 °C
0 0.1722 35.87 0.30
20 0.1537 32.01 3.86 0.27
40 0.1352 28.15 7.72 0.24
60 0.1166 24.29 11.58 0.20
80 0.0981 20.43 15.43 0.17
Tab.3  Comparison of S-1 (750 °C) with S-2 (621.4 °C) in utility and energy consumption
Heat recovery/% NG in a boiler /(kmol·h?1) Q_boiler /kW Q_HX /kW Energy consumption /(kWh·Nm?3)
Single
reactor
T = 700 °C
0 0.1867 38.88 0.32
20 0.1621 33.75 5.13 0.28
40 0.1375 28.63 10.25 0.24
60 0.1128 23.50 15.38 0.20
80 0.0882 18.37 20.50 0.15
Series
Reactor
T = 589.6 °C
0 0.1636 34.06 0.28
20 0.1451 30.23 3.83 0.26
40 0.1267 26.39 7.67 0.22
60 0.1083 22.56 11.50 0.19
80 0.0899 18.73 15.34 0.15
Tab.4  Comparison of S-1 (700 °C) with S-2 (589.6 °C) in utility and energy consumption
NG in boiler /(kmol?h?1) NG cost Cost savings
/%
/(MJ?h?1 )1) /($?yr?1) 2)
Single reactor
T = 750 °C
0.1992 177.33 21126.60 13.55
Series reactor
T = 621.4 °C
0.1722 153.30 18263.06
Single reactor
T = 700 °C
0.1867 166.20 19800.89 12.37
Series reactor
T = 589.6 °C
0.1636 145.64 17351.00
Tab.5  Preliminary cost estimation based on natural gas (NG) consumption
1 Gompel J V, Walling T. A new way to treat process exhaust to remove CF4. Semiconductor International, 1977, 20(10): 95–100
2 Tsai W T, Chem H P, Hsien W Y. A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. Journal of Loss Prevention in the Process Industries, 2002, 15(2): 65–75
https://doi.org/10.1016/S0950-4230(01)00067-5
3 Brown R S, Rossin J A, Thomas C J. Catalytic process for control of PFC emissions. Semiconductor International, 2001, 24(6): 209–215
4 Takita Y, Morita C, Ninomiya M, Wakamatsu H, Nishiguchi H, Ishihara T. Catalytic decomposition of CF4 over AlPO4-based catalysts. Chemistry Letters, 1999, 28(5): 417–418
https://doi.org/10.1246/cl.1999.417
5 Xu X F, Jeon J Y, Choi M H, Kim H Y, Choi W C, Park Y K. A strategy to protect Al2O3-based PFC decomposition catalyst from deactivation. Chemistry Letters, 2005, 34(3): 364–365
https://doi.org/10.1246/cl.2005.364
6 Song J, Chung S, Kim M, Seo M, Lee Y, Lee K, Kim J. The catalytic decomposition of CF4 over Ce/Al2O3 modified by a cerium sulfate precursor. Journal of Molecular Catalysis A Chemical, 2013, 370: 50–55
https://doi.org/10.1016/j.molcata.2012.12.011
7 Han W, Chen Y, Kin B, Liu H, Yu H. Catalytic hydrolysis of trifluoromethane over alumina. Greenhouse Gases. Science and Technology, 2014, 4(1): 121–130
8 Park N, Park H, Lee T, Chang W, Kwon W. Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6. Catalysis Today, 2012, 185(1): 247–252
https://doi.org/10.1016/j.cattod.2011.08.008
9 Lee Y C, Jeon J K. A study on catalytic process in pilot plant for abatement of PFC emission. Cleanroom Technology, 2012, 18(2): 216–220
https://doi.org/10.7464/ksct.2012.18.2.216
10 Elkanzi E M. Simulation of the process of biological removal of hydrogen sulfide from gas. In: Proceedings of the 1st Annual Gas Processing Symposium, 2009, 1: 266–275
11 Sunny A, Solomon P A, Aparna K. Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS. Journal of Natural Gas Science and Engineering, 2016, 30: 176–181
https://doi.org/10.1016/j.jngse.2016.02.013
12 Kazemi A, Malayeri M, Gharibi kharaji A, Shariati A. Gharibi kharaji A, Shariati A. Feasibility study, simulation, and economical evaluation of natural gas sweetening processes – Part 1: A case study on a low capacity plant in iran. Journal of Natural Gas Science and Engineering, 2014, 20: 16–22
https://doi.org/10.1016/j.jngse.2014.06.001
13 Peters L, Hussain A, Follmann M, Melin T, Hagg M B. CO2 removal from natural gas by employing amine absorption and membrane technology – A technical and economical analysis. Chemical Engineering Journal, 2011, 172(2-3): 952–960
https://doi.org/10.1016/j.cej.2011.07.007
14 Ahmad F, Lau K K, Shariff A M, Murshid G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers & Chemical Engineering, 2012, 36(10): 119–128
https://doi.org/10.1016/j.compchemeng.2011.08.002
15 Ploegmakers J, Jelsma A R T, van der Ham A G J, Nijmeijer K. Economic evaluation of membrane potential for ethylene/ethane separation in a retrofitted hybrid membrane-distillation plant using Unisim Design. Industrial & Engineering Chemistry Research, 2013, 52(19): 6524–6539
https://doi.org/10.1021/ie400737s
16 Choi J, Park M, Kim J, Ko Y, Lee S, Baek I. Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194
https://doi.org/10.1007/s11814-013-0042-7
17 Marchioro Y P A, Lakew A A, Bolland O. Integration of low-temperature transcritical CO2 Rankine cycle in natural gas-fired combined cycle (NGCC) with post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2013, 12: 213–219
https://doi.org/10.1016/j.ijggc.2012.11.005
18 Park M, Kim E. Thermodynamic evaluation on the integrated system of VHTR and forward osmosis desalination process. Desalination, 2014, 337(17): 117–126
https://doi.org/10.1016/j.desal.2013.11.023
19 Nahar G A, Madhani S S. Thermodynamics of hydrogen production by the steam reforming of butanol: Analysis of inorganic gases and light hydrocarbons. International Journal of Hydrogen Energy, 2010, 35(1): 98–109
https://doi.org/10.1016/j.ijhydene.2009.10.013
20 Leonzio G. Process analysis of biological Sabatier reaction for bio-methane production. Chemical Engineering Journal, 2016, 290(15): 490–498
https://doi.org/10.1016/j.cej.2016.01.068
21 Denz N, Ausberg L, Bruns M, Viere T. Supporting resource efficiency in chemical industries IT-based integration of flow sheet simulation and material flow analysis. 21st CIRP Conference on Life Cycle Engineering, 2014, 15: 537–542
22 Ou L, Thilakaratne R, Brown R C, Wright M M. Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass and Bioenergy, 2015, 72: 45–54
https://doi.org/10.1016/j.biombioe.2014.11.018
23 Apostolakou A A, Kookos I K, Marazioti C, Angelopoulos K C. Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Processing Technology, 2009, 90(7-8): 1023–1031
https://doi.org/10.1016/j.fuproc.2009.04.017
24 Sanchez M J G, Tsotsis T T. Catalytic membranes and membrane reactors. Weinheim: Wiley-VCH, 2002, 5–6
25 Lim H. Hydrogen selectivity and permeance effect on the water gas shift reaction (WGSR) in a membrane reactor. Korean Journal of Chemical Engineering, 2015, 32(8): 1522–1527
https://doi.org/10.1007/s11814-014-0359-x
26 Turton R. Analysis, synthesis, and design of chemical processes. New Jersey: Pearson, 2013, 157–226
[1] Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner. Techno-economic assessment of providing control energy reserves with a biogas plant[J]. Front. Chem. Sci. Eng., 2018, 12(4): 763-771.
[2] Jae-Yun Han, Chang-Hyun Kim, Boreum Lee, Sung-Chan Nam, Ho-Young Jung, Hankwon Lim, Kwan-Young Lee, Shin-Kun Ryi. Sorption enhanced catalytic CF4 hydrolysis with a three-stage catalyst-adsorbent reactor[J]. Front. Chem. Sci. Eng., 2017, 11(4): 537-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed