Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 379-386    https://doi.org/10.1007/s11705-017-1634-2
RESEARCH ARTICLE
Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety
Xiaoming Ding1, Zhiwen Zhai2, Luping Lv1, Zhaohui Sun2, Xinghai Liu2()
1. Linjiang College, Hangzhou Vocational & Technical College, Hangzhou 310018, China
2. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 Download: PDF(223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A variety of pyrazole derivatives containing 1,3,4-thiadiazole moiety were synthesized under microwave irradiation, and their structures were confirmed by 1H NMR and HRMS. They were evaluated for herbicidal and antifungal activities, and the results indicated that two compounds with a phenyl group (6a) and 4-tert-butylphenyl group (6n) possess good herbicidal activity for dicotyledon Brassica campestris and Raphanus sativus with the inhibition of 90% for root and 80%–90% for stalk at 100 ppm respectively. The structure-activity relationship of compounds 6a and 6n was also studied by density function theory method.

Keywords pyrazole      1,3,4-thiadiazole      antifungal activity      herbicidal activity      density function theory     
Corresponding Author(s): Xinghai Liu   
Just Accepted Date: 07 April 2017   Online First Date: 18 May 2017    Issue Date: 23 August 2017
 Cite this article:   
Xiaoming Ding,Zhiwen Zhai,Luping Lv, et al. Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety[J]. Front. Chem. Sci. Eng., 2017, 11(3): 379-386.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1634-2
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/379
Fig.1  Scheme 1Design strategy for pyrazole compounds with 1,3,4-thiadiazole moiety
Fig.2  Scheme 2The synthetic route of pyrazole derivatives
No.RBotrytis cinereaColletotrichum orbiculareBotryospuaeria berengerianaRhizoctonia solani
6aPh022.2218.394.51
6b2-ClPh11.4326.3924.142.94
6c4-ClPh1.4316.6710.342.41
6d4-CNPh2.8626.3917.242.41
6e2-FPh7.1429.1718.393.46
6f2,4-2ClPh2.8637.5017.247.14
6g3-ClPh8.5727.7819.543.46
6h3,4-2ClPh2.869.7218.395.04
6i4-BrPh5.7119.4419.542.94
6j12.8643.0614.947.14
6kCN025.0022.990.84
6l10.0023.6111.494.51
6mCH=CH27.1426.3922.9916.05
6nt-BuPh12.8627.7831.0316.05
Thifluzamide25.6370.3560.1278.56
Tab.1  The antifungal activity of the pyrazole derivatives in vitro at 20 ppm
No.RTriticum aestivumSorghum bicolorEchinochloa crusgalliCucumis sativusBrassica campestrisRaphanus sativus
RootStalkRootStalkRootStalkRootStalkRootStalkRootStalk
6aPh502050206050305090908090
6b2-ClPh00000030000200
6c4-ClPh00000030500000
6d4-CNPh002000030030302030
6e2-FPh00000000200300
6f2,4-2ClPh002000000200200
6g3-ClPh0020000003020300
6h3,4-2ClPh00000000200200
6i4-BrPh00000030090808030
6j00000000500200
6kCN0000000040206030
6l002000020050206030
6mCH=CH200000060080808060
6nt-BuPh5050300300803090809080
Pyribambenz-propyl95951009010095959010010010090
Tab.2  The herbicidal activity of the pyrazole derivatives at 100 ppm (%)
Fig.7  The property of compounds 6a and 6n
DFT6a6hPenflufen
Etotal/Hartreea)?1556.98240747?2476.12634467?1039.42133553
EHOMO/Hartree?0.22244?0.22025?0.21213
ELUMO/Hartree?0.05236?0.05913?0.03229
Eb)/Hartree0.170080.161120.17984
Tab.3  Total energy and frontier orbital energy
Fig.8  FMO of compounds 6a, 6h and penflufen (the color section represents electronic occupied)
1 Lei K, Sun D W, Hua X W, Tao Y Y, Xu X H, Kong C H. Synthesis, fungicidal activity and structure-activity relationships of 3-benzoyl-4-hydroxylcoumarin derivatives. Pest Management Science, 2016, 72(7): 1381–1389
https://doi.org/10.1002/ps.4164
2 Li M, Liu C L, Zhang J, Wu Q, Hao S L, Song Y Q. Design, synthesis and structure-activity relationship of novel insecticidal dichloro-allyloxy-phenol derivatives containing substituted pyrazol-3-ols. Pest Management Science, 2013, 69(5): 635–641
https://doi.org/10.1002/ps.3417
3 Gan X H, Hu D Y, Li P, Wu J, Chen X W, Xue W, Song B A. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Management Science, 2016, 72(3): 534–543
https://doi.org/10.1002/ps.4018
4 Bera H, Dolzhenko A V, Sun L Y, Gupta S D, Chui W K. Synthesis and in vitro evaluation of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives as thymidine phosphorylase inhibitors. Chemical Biology & Drug Design, 2013, 82(3): 351–360
https://doi.org/10.1111/cbdd.12171
5 Xiao Y S, Yan X J, Xu Y J, Huang J X, Yuan H Z, Liang X M, Zhang J J, Wang D Q. Design synthesis and fungicidal activity of 1,1-alkoxyimino-5,6-dihydro-dibenzo[b,e]azepine-6-one derivatives. Pest Management Science, 2013, 69(7): 814–826
https://doi.org/10.1002/ps.3440
6 Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. One-pot synthesis of new triazole-imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorganic & Medicinal Chemistry Letters, 2015, 25(19): 4169–4173
https://doi.org/10.1016/j.bmcl.2015.08.009
7 Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. Ionic liquid-promoted one-pot synthesis of thiazole-imidazo[2,1-b][1,3,4] thiadiazole hybrids and their antitubercular activity. MedChemComm, 2016, 7(2): 338–344
https://doi.org/10.1039/C5MD00346F
8 Romagnoli R, Baraldi P G, Prencipe F, Balzarini J, Liekens S, Estevez F. Design synthesis and antiproliferative activity of novel heterobivalent hybrids based on imidazo[2,1-b][1,3,4]thiadiazole and imidazo[2,1-b][1,3]thiazole scaffolds. European Journal of Medicinal Chemistry, 2015, 101: 205–217
https://doi.org/10.1016/j.ejmech.2015.06.042
9 Zhang L J, Yang M Y, Sun Z H, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and antifungal activity of 1,3,4-thiadiazole derivatives containing pyridine group. Letters in Drug Design & Discovery, 2014, 11(9): 1107–1111
https://doi.org/10.2174/1570180811666140610212731
10 Yan S L, Yang M Y, Sun Z H, Min L J, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and antifungal activity of 1,2,3-thiadiazole derivatives containing 1,3,4-thiadiazole moiety. Letters in Drug Design & Discovery, 2014, 11(7): 940–943
https://doi.org/10.2174/1570180811666140423222141
11 Maddila S, Gorle S, Singh M, Lavanya P, Jonnalagadda S B. Synthesis and anti-inflammatory activity of fused 1,2,4-triazolo-[3,4-b][1,3,4]thiadiazole derivatives of phenothiazine. Letters in Drug Design & Discovery, 2013, 10: 977–983
https://doi.org/10.2174/15701808113109990034
12 Barbuceanu S F, Ilies D C, Radulescu V, Socea L I, Draghici C, Saramet G. Synthesis, characterization and antioxidant activity evaluation of some 1,3,4-thiadiazole and 1,3,4-oxadiazole compounds. Revista de Chimie, 2014, 65: 1172–1175
13 Skrzypek A, Matysiak J, Karpinska M M, Niewiadomy A. Synthesis and anticholinesterase activities of novel 1,3,4-thiadiazole based compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28(4): 816–823
https://doi.org/10.3109/14756366.2012.688041
14 Bhinge S D, Chature V, Sonawane L V. Synthesis of some novel 1,3,4-thiadiazole derivatives and biological screening for anti-microbial antifungal and anthelmintic activity. Pharmaceutical Chemistry Journal, 2015, 49(6): 367–372
https://doi.org/10.1007/s11094-015-1287-8
15 Zhu H L, Liu Y W, Liu W W, Yin F J, Cao Z L, Bao J, Li M, Qin L Y, Shi D H. Synthesis characterisation and acetylcholinesterase-inhibition activities of 5-benzyl-1,3,4-thiadiazol-2-amine derivatives. Journal of Chemical Research, 2016, 1(1): 16–20
https://doi.org/10.3184/174751916X14494964318204
16 Gomha S M, Salaheldin T A, Hassaneen H M E, Abdel-Aziz H M, Khedr M A. Synthesis, characterization and molecular docking of novel bioactive thiazolyl-thiazole derivatives as promising cytotoxic antitumor drug. Molecules (Basel, Switzerland), 2016, 21(1): 3
https://doi.org/10.3390/molecules21010003
17 Liu Y J, Feng G B, Ma Z H, Xu C, Guo Z, Gong P, Xu L Y. Synthesis and anti-hepatitis B virus evaluation of 7-methoxy-3-heterocyclic quinolin-6-ols. Archiv der Pharmazie, 2015, 348(11): 776–785
https://doi.org/10.1002/ardp.201500238
18 Zhai Z W, Shi Y X, Yang M Y, Zhao W, Sun Z H, Weng J Q, Tan C X, Liu X H, Li B J, Zhang Y G. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1,2,4-triazolo[4,3-a]pyridine moiety. Letters in Drug Design & Discovery, 2016, 13(6): 521–525
https://doi.org/10.2174/157018081306160618181757
19 Balbaa M, Shibli A, Hosna R, Yusef H, Boraei A T A, El Ashry E H. Biological effect of glycosyl-oxadiazolinethione and glycosyl-sulfanyloxadiazole derivatives through their in vitro inhibition of glycosidases from bacteria and normal or diabetic rats. Letters in Drug Design & Discovery, 2015, 12(3): 211–218
https://doi.org/10.2174/1570180811666141010001221
20 Qi D Q, You J Z, Wang X J, Zhang Y P. Synthesis crystal structures and xanthine oxidase inhibitory activity of 2-(benzylthio)-5-[1-(4-fluorobenzyl)-3-phenyl-1H-pyrazol-5-yl]-1,3,4-oxadiazoles derivatives. Journal of Chemical Research, 2008, 12: 706–710
21 Bhat M A, Al-Omar M A, Naglah A M, Abdulla M M, Fun H K. Synthesis and antitumor activity of 4-cyclohexyl/aryl-5-(pyridin-4-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones. Medicinal Chemistry Research, 2015, 24(4): 1558–1567
https://doi.org/10.1007/s00044-014-1216-5
22 Abdel-Hamid M K, Abdel-Hafez A A, El-Koussi N A, Mahfouz N M, Innocenti A, Supuran C T. Design, synthesis, and docking studies of new 1,3,4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity. Bioorganic & Medicinal Chemistry, 2007, 15(22): 6975–6984
https://doi.org/10.1016/j.bmc.2007.07.044
23 Zhao W, Xing J, Xu T, Peng W, Liu X. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Frontiers of Chemical Science and Engineering, 2017, DOI: 10.1007/s11705-016-1595-x
24 Ningaiah S, Bhadraiah U K, Doddaramappa S D, Keshavamurthy S, Javarasetty C. Novel pyrazole integrated 1,3,4-oxadiazoles: Synthesis, characterization and antimicrobial evaluation. Bioorganic & Medicinal Chemistry Letters, 2014, 24(1): 245–248
https://doi.org/10.1016/j.bmcl.2013.11.029
25 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, et al. Gaussian 03, Revision C. 01. Wallingford, CT: Gaussian, Inc., 2004
26 Wang Z J, Gao Y, Hou Y L, Zhang C, Yu S J, Bian Q, Li Z M, Zhao W G. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. European Journal of Medicinal Chemistry, 2014, 68: 87–94
https://doi.org/10.1016/j.ejmech.2014.08.029
27 Patil R, Bhand S, Konkimalla V B, Banerjee P, Ugale B, Chadar D, Saha S K, Praharaj P P, Nagaraja C M, Chakrovarty D, et al. Molecular association of 2-(n-alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines. Journal of Molecular Structure, 2016, 1125: 272–281
https://doi.org/10.1016/j.molstruc.2016.06.075
[1] Long Cheng, Ruirui Zhang, Hongke Wu, Xinghai Liu, Tianming Xu. The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae[J]. Front. Chem. Sci. Eng., 2019, 13(2): 369-376.
[2] Wen Zhao, Jiahua Xing, Tianming Xu, Weili Peng, Xinghai Liu. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Front. Chem. Sci. Eng., 2017, 11(3): 363-368.
[3] T. G. YUDINA, Danyang GUO, N. F. PISKUNKOVA, I. B. PAVLOVA, L. L. ZAVALOVA, I. P. BASKOVA. Antifungal and antibacterial functions of medicinal leech recombinant destabilase-lysozyme and its heated-up derivative[J]. Front Chem Sci Eng, 2012, 6(2): 203-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed