Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 346-352    https://doi.org/10.1007/s11705-017-1648-9
RESEARCH ARTICLE
A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries
Linghui Yu1, Jiansong Miao1, Yi Jin2, Jerry Y.S. Lin1()
1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
2. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute, Beijing 100192, China
 Download: PDF(328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Coating commercial porous polyolefin separators with inorganic materials can improve the thermal stability of the polyolefin separators and hence improve the safety of lithium-ion batteries. Several different inorganic materials have been studied for the coating. However, there lacks a study on how different inorganic materials affect the properties of separators, in terms of thermal stability and cell performance. Herein, we present such a study on coating a commercial polypropylene separator with four inorganic materials, i.e., Al2O3, SiO2, ZrO2 and zeolite. All inorganic coatings have improved thermal stability of the separators although with differences. The coating layers add 28%–45% of electrical resistance compared with the pure polypropylene separator, but all the cells prepared with the coated polypropylene separators have the same electrical chemical performance as the uncoated separator in terms of rate capability and capacities at different temperatures.

Keywords lithium-ion battery      battery safety      composite separator      porosity      tortuosity     
Corresponding Author(s): Jerry Y.S. Lin   
Just Accepted Date: 07 April 2017   Online First Date: 05 June 2017    Issue Date: 23 August 2017
 Cite this article:   
Linghui Yu,Jiansong Miao,Yi Jin, et al. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2017, 11(3): 346-352.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1648-9
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/346
Fig.1  SEM images of the inorganic coating layers. Coating materials: (a) Al2O3, (b) SiO2, (c) ZrO2 and (d) zeolite. Inset in (c), a magnified image of ZrO2, showing the large particle is aggregated from small particles
Al2O3SiO2ZrO2Zeolite
Phase structureRhombohedralAmorphousMonoclinicMFI type
Particle size /µma0.1?10.3?0.40.1?0.50.2?1.5
Porosity of coating layer /%56.146.769.165.9
Tab.1  Properties of the coating materials and the coating layers
Fig.2  (a) Photographs of three coated separators after thermal treatment at 130 °C for 30 min. Photographs for the pure PP and the Al2O3 coated separator can be found in our previous report [28]; (b) thermal shrinkage obtained based on the photographs. Image J was used for the shrinkage analysis. The composite separators are denoted by the coating materials
Fig.3  Electrolyte contact angle of the pure PP and the coating side of the coated separators. Images recorded at 90 s after dropping the electrolyte. The composite separators are denoted by the coating materials
Fig.4  Gurley seconds (100 mL) of the pure PP and the composite separators. The composite separators are denoted by the coating materials
Fig.5  Electrical resistivity of the pure PP and the composite separators when filled with the electrolyte. The composite separators are denoted by the coating materials
Fig.6  NCM cell performance with different separators. (a) Galvanostatic charge/discharge curves of the 3rd cycle at a current density of 30 mA·g1 at room temperature; (b) rate and cycling performance at room temperature; (c) cell performance at a current density of 100 mA·g1 at different temperature. The composite separators are denoted by the coating materials
1 Goodenough J B, Park K S. The li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
https://doi.org/10.1021/ja3091438
2 Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie International Edition, 2012, 51(40): 9994–10024
https://doi.org/10.1002/anie.201201429
3 Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012, 208: 210–224
https://doi.org/10.1016/j.jpowsour.2012.02.038
4 Balakrishnan P G, Ramesh R, Kumar T P. Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006, 155(2): 401–414
https://doi.org/10.1016/j.jpowsour.2005.12.002
5 Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3): 587–603
https://doi.org/10.1021/cm901452z
6 Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications, 2014, 5: 5193
https://doi.org/10.1038/ncomms6193
7 Chen Z, Hsu P C, Lopez J, Li Y, To J W F, Liu N, Wang C, Andrews Sean C, Liu J, Cui Y, Bao Z. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 15009
https://doi.org/10.1038/nenergy.2015.9
8 Augustin S, Hennige V, Hörpel G, Hying C. Ceramic but flexible: New ceramic membrane foils for fuel cells and batteries. Desalination, 2002, 146(1-3): 23–28
https://doi.org/10.1016/S0011-9164(02)00465-4
9 Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J. The functional separator coated with core-shell structured silica-poly (methyl methacrylate) sub-microspheres for lithium-ion batteries. Journal of Membrane Science, 2015, 474: 148–155
https://doi.org/10.1016/j.memsci.2014.09.047
10 Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007, 164(1): 351–364
https://doi.org/10.1016/j.jpowsour.2006.10.065
11 Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014, 7(12): 3857–3886
https://doi.org/10.1039/C4EE01432D
12 Huang X, Hitt J. Lithium ion battery separators: Development and performance characterization of a composite membrane. Journal of Membrane Science, 2013, 425-426: 163–168
https://doi.org/10.1016/j.memsci.2012.09.027
13 Jeong H S, Lee S Y. Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 2011, 196(16): 6716–6722
https://doi.org/10.1016/j.jpowsour.2010.11.037
14 Fu D, Luan B, Argue S, Bureau M N, Davidson I J. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. Journal of Power Sources, 2012, 206: 325–333
https://doi.org/10.1016/j.jpowsour.2011.10.130
15 Kim M, Park J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. Journal of Power Sources, 2012, 212: 22–27
https://doi.org/10.1016/j.jpowsour.2012.03.038
16 Fang L F, Shi J L, Jiang J H, Li H, Zhu B K, Zhu L P. Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Advances, 2014, 4(43): 22501–22508
https://doi.org/10.1039/c4ra01713g
17 Prasanna K, Kim C S, Lee C W. Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Materials Chemistry and Physics, 2014, 146(3): 545–550
https://doi.org/10.1016/j.matchemphys.2014.04.014
18 Zhang P, Chen L, Shi C, Yang P, Zhao J. Development and characterization of silica tube-coated separator for lithium ion batteries. Journal of Power Sources, 2015, 284: 10–15
https://doi.org/10.1016/j.jpowsour.2015.02.126
19 Jeong H S, Hong S C, Lee S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science, 2010, 364(1-2): 177–182
https://doi.org/10.1016/j.memsci.2010.08.012
20 Jeong H S, Kim D W, Jeong Y U, Lee S Y. Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. Journal of Power Sources, 2010, 195(18): 6116–6121
https://doi.org/10.1016/j.jpowsour.2009.10.085
21 Lee T, Kim W K, Lee Y, Ryou M H, Lee Y M. Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries. Macromolecular Research, 2014, 22(11): 1190–1195
https://doi.org/10.1007/s13233-014-2163-1
22 Kim K, Hepowit L, Kim J C, Lee Y G, Ko J. Enhanced separator properties by coating alumina nanoparticles with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) binder for lithium-ion batteries. Korean Journal of Chemical Engineering, 2015, 32(4): 717–722
https://doi.org/10.1007/s11814-014-0268-z
23 Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L. Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochimica Acta, 2015, 159: 61–65
https://doi.org/10.1016/j.electacta.2015.01.208
24 Yeon D, Lee Y, Ryou M H, Lee Y M. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochimica Acta, 2015, 157: 282–289
https://doi.org/10.1016/j.electacta.2015.01.078
25 Dong X L, Mi W L, Yu L H, Jin Y, Lin Y S. Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous and Mesoporous Materials, 2016, 226: 406–414
https://doi.org/10.1016/j.micromeso.2016.02.006
26 Zhang Z, Li X, Shi L, Ramadass P, Halmo P M, Zhang X. Separator membranes for lithium ion batteries and related methods. US Patent, 20140045033 A1, 2014
27 Call R W, Fulk C W, Shi L, Zhang X, Nguyen K V. Co-extruded, multi-layered battery separator. US Patent, 2008: US2008/0118827 A1
28 Yu L H, Jin Y, Lin Y S. Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder. RSC Advances, 2016, 6(46): 40002–40009
https://doi.org/10.1039/C6RA04522G
29 An M Y, Kim H T, Chang D R. Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries. Journal of Solid State Electrochemistry, 2014, 18(7): 1807–1814
https://doi.org/10.1007/s10008-014-2412-4
30 Shin W K, Kim D W. High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. Journal of Power Sources, 2013, 226(0): 54–60
https://doi.org/10.1016/j.jpowsour.2012.10.082
31 Arora P, Zhang Z. Battery separators. Chemical Reviews, 2004, 104(10): 4419–4462
https://doi.org/10.1021/cr020738u
[1] Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 988-996.
[2] XU Yunlong, TAO Lili, MA Hongyan, HUANG Huaqing. LiFePO/C cathode materials synthesized by co-precipitation and microwave heating [J]. Front. Chem. Sci. Eng., 2008, 2(4): 422-427.
[3] LIU Xiaoye, DAI Gance. Impregnation of thermoplastic resin in jute fiber mat[J]. Front. Chem. Sci. Eng., 2008, 2(2): 145-149.
[4] GAO Jian, REN Zhongqi, ZHANG Zeting, ZHANG Weidong. Experimental studies on the influence of porosity on membrane absorption process[J]. Front. Chem. Sci. Eng., 2007, 1(4): 385-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed