Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (4) : 564-574    https://doi.org/10.1007/s11705-017-1654-y
RESEARCH ARTICLE
The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction
Baodong Song1, Yongqiang Li1, Gang Cao2, Zhenhai Sun1, Xu Han3()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Nankai University Catalyst Co. Ltd, Tianjin 300072, China
3. Key Lab of Indoor Air Environment Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
 Download: PDF(480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the transformation of methanol to gasoline (MTG), the selectivity to gasoline and the aromatic content in the produced gasoline are important factors. The catalytic activities of steam-treated and non-steam-treated nano-scale H-ZSM-5 (NHZ5) catalysts impregnated with Ag(I), Zn(II) or P(V) have been investigated in a continuous flow fixed bed reactor. The NH3-TPD results showed that after impregnation, the Ag/NHZ5, Zn/NHZ5 and P/NHZ5 catalysts contained comparatively more strong, medium-strong and weak acid sites, respectively. Treatment with steam decreased the number of acid sites in all the catalysts, but the pore volumes in the catalysts were larger which improved carbon deposition resistance resulting in prolonged lifetimes. After 6 h of MTG reaction, the selectivity to gasoline for the steam-treated catalysts, AgH2O/NHZ5, ZnH2O/NHZ5 and PH2O/NHZ5 were 70.5, 68.4 and 68.7 wt-%, respectively, whereas their respective aromatic contents in the produced gasoline were 61.9, 55.4 and 39.0 wt-%. Thus PH2O/NHZ5 is the most promising catalyst for MTG applications which can meet the China IV gasoline standard that the amount of aromatics in gasoline should be less than 48 wt-%.

Keywords MTG      nano-scale H-ZSM-5      steam treatment      gasoline      selectivity to gasoline     
Corresponding Author(s): Xu Han   
Just Accepted Date: 14 April 2017   Online First Date: 19 July 2017    Issue Date: 06 November 2017
 Cite this article:   
Baodong Song,Yongqiang Li,Gang Cao, et al. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction[J]. Front. Chem. Sci. Eng., 2017, 11(4): 564-574.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1654-y
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I4/564
Fig.1  Scheme 1MTG reaction unit 1, 2: Flow rate controller; 3: Temperature controller
Fig.2  SEM images of (a) HZSM-5, (b) Zn/NHZ5, (c) P/NHZ5 and (d) Ag/NHZ5, as well as EDX analysis of (e) Zn/NHZ5, (f) P/NHZ5 and (g) Ag/NHZ5
Fig.3  The XRD patterns of NHZ5 and the modified samples
SamplesSBET/(m2·g?1)Vpore/(cm3·g?1)
StotalSmseoVtotVmseo
NHZ5445.4168.50.4370.321
Ag/NHZ5387.6142.70.3730.259
Zn/NHZ5418.5152.70.4020.285
P/NHZ5322.1102.30.2440.125
AgH2O/NHZ5517.7201.50.7670.655
ZnH2O/NHZ5544.8221.30.8340.715
PH2O/NHZ5556.7235.80.8720.737
Tab.1  Characterization of the pristine and the modified NHZ5
Fig.4  NH3-TPD patterns of NHZ5 and modified samples
Fig.5  Methanol conversions over NHZ5 and the doped NHZ5 catalysts as a function of time. Reaction conditions: WHSV, 6.7 h?1; temperature, 673 K; reaction pressure, 0.1 MPa; catalyst loading, 10 g
SamplesYields /%SOA /wt-%SOG /wt-%COA /wt-%
CH4C2-C4C5+C6H6C7H8C8H10C9H12C10H14
NHZ52.138.028.40.43.913.59.45.632.861.250.7
Ag/NHZ52.428.815.31.35.512.825.48.553.568.476.2
Zn/NHZ51.933.518.70.96.816.213.48.345.664.369.1
P/NHZ51.559.724.10.51.86.53.32.214.338.436.3
Tab.2  Product distribution over the pristine and the modified NHZ5a)
Fig.6  Scheme 2Reaction mechanism of MTG
Fig.7  The selectivity to aromatics with time over NHZ5 and the doped NHZ5. Reaction conditions: WHSV, 6.7 h?1; temperature, 673 K; reaction pressure, 0.1 MPa; catalyst loading 10 g
Fig.8  The selectivity to gasoline with time over NHZ5 and the doped NHZ5. Reaction conditions: WHSV, 6.7 h?1; temperature, 673 K; reaction pressure, 0.1 MPa; catalyst loading 10 g
Fig.9  Methanol conversion with time over the pristine and the steam modified NHZ5 catalyst. Reaction conditions: WHSV, 6.7 h?1; temperature, 673 K; reaction pressure, 0.1 MPa; catalyst loading, 10 g
SamplesYields /%SOA /wt-%SOG /wt-%COA /wt-%
CH4C2-C4C5+C6H6C7H8C8H10C9H12C10H14
NHZ52.138.028.40.43.913.59.45.632.861.250.7
AgH2O/NHZ52.226.925.70.95.211.218.77.844.870.561.9
ZnH2O/NHZ52.029.329.50.75.714.311.36.938.968.455.4
PH2O/NHZ51.129.241.20.43.211.08.74.227.568.739.0
Tab.3  Product distribution over the pristine and the steam modified NHZ5a)
Fig.10  The selectivity to aromatics with time over NHZ5 and the steamed NHZ5. Reaction conditions: WHSV, 6.7 h?1; temperature, 673 K; reaction pressure, 0.1 MPa; catalyst loading, 10 g
Fig.11  The selectivity to gasoline with time over NHZ5 and the steamed NHZ5. Reaction conditions: WHSV, 6.7 h?1; temperature, 673 K; reaction pressure, 0.1 MPa; catalyst loading, 10 g
1 Bjørgen M, Joensen F M, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50
https://doi.org/10.1016/j.apcata.2008.04.020
2 Galadima A, Muraza O. From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review. Journal of Natural Gas Science and Engineering, 2015, 25: 303–316
https://doi.org/10.1016/j.jngse.2015.05.012
3 Silva M J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Processing Technology, 2016, 145: 42–61
https://doi.org/10.1016/j.fuproc.2016.01.023
4 Keil F J. Methanol-to-hydrocarbons: Process technology. Microporous and Mesoporous Materials, 1999, 29(1): 49–66
https://doi.org/10.1016/S1387-1811(98)00320-5
5 Chang C D, Silvestri A J. The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259
https://doi.org/10.1016/0021-9517(77)90172-5
6 Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279(2): 257–268
https://doi.org/10.1016/j.jcat.2011.01.019
7 Rownaghi A A, Rezaei F, Hedlund J. Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. Catalysis Communications, 2011, 14(1): 37–41
https://doi.org/10.1016/j.catcom.2011.07.015
8 Ding C, Wang X, Guo X, Zhang S. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst. Catalysis Communications, 2008, 9(4): 487–493
https://doi.org/10.1016/j.catcom.2007.07.013
9 Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 2009, 10(12): 1582–1585
https://doi.org/10.1016/j.catcom.2009.04.021
10 Saxena S K, Viswanadham N, Al-Muhtaseb A H. Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2876–2882
https://doi.org/10.1016/j.jiec.2013.11.021
11 Zaidi H A, Pant K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catalysis Today, 2004, 96(3): 155–160
https://doi.org/10.1016/j.cattod.2004.06.123
12 Inoue Y, Nakashiro K, Ono Y. Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995, 4(5): 379–383
https://doi.org/10.1016/0927-6513(95)00020-A
13 Zhang S, Zhang B, Gao Z, Han Y. Methanol to olefin over Ca-modified HZSM-5 zeolites. Industrial & Engineering Chemistry Research, 2010, 49(5): 2103–2106
https://doi.org/10.1021/ie901446m
14 Ono Y, Adachi H, Senoda Y. Selective conversion of methanol into aromatic hydrocarbons over Zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions, 1988, 84(4): 1091–1099
https://doi.org/10.1039/f19888401091
15 Li M, Zhou Y, Oduro I N, Fang Y. Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM-5. Fuel, 2016, 168: 68–75
https://doi.org/10.1016/j.fuel.2015.11.076
16 Dyballa M, Klemm E, Weitkamp J, Hunger M. Effect of phosphate modification on the Brønsted acidity and methanol-to-olefin conversion activity of zeolite ZSM-5. Chemieingenieurtechnik (Weinheim), 2013, 85(11): 1719–1725
https://doi.org/10.1002/cite.201300066
17 Tynjala P, Pakkanen T T. Modification of ZSM-5 zeolite with trimethylphosphite. Microporous and Mesoporous Materials, 1998, 20(4): 363–369
https://doi.org/10.1016/S1387-1811(97)00050-4
18 Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. Journal of Colloid and Interface Science, 2011, 361(2): 521–526
https://doi.org/10.1016/j.jcis.2011.06.020
19 Liu Z, Dong X, Zhu Y, Emwas A H, Zhang D, Tian Q, Han Y. Investigating the Influence of mesoporosity in zeolite beta on its catalytic performance for the conversion of methanol to hydrocarbons. ACS Catalysis, 2015, 5(10): 5837–5845
https://doi.org/10.1021/acscatal.5b01350
20 Aramburo L R, Teketel S, Svelle S, Bare S R, Arstad B, Zandbergen H W, Olsbye U, Groot F M F, Weckhuysen B M. Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2013, 307: 185–193
https://doi.org/10.1016/j.jcat.2013.07.009
21 Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011, 20(3): 237–242
https://doi.org/10.1016/S1003-9953(10)60184-3
22 Yue X, Wu Y, Hao J, Pang Y, Ma Y, Li Y, Li B, Bao X. Fuel quality manegement versus vehicle emission control in China status quo and future perspectives. Energy Policy, 2015, 79: 87–98
https://doi.org/10.1016/j.enpol.2015.01.009
23 Kolesnichenko N V, Kitaev L E, Bukina Z M, Markova N A, Yushchenko V V, Yashina O V, Lin G I, Rozovskii A Y. Synthesis of gasoline from syngas via dimethyl ether. Kinetics and Catalysis, 2007, 48(6): 789–793
https://doi.org/10.1134/S0023158407060043
24 Treacy M M J, Higgins J B. Collection of simulated XRD powder patterns for zeolites. Applied Catalysis, 1986, 21(2): 388–389
https://doi.org/10.1016/S0166-9834(00)81382-2
25 Masuda T, Fujikata Y, Mukai S R, Hashimoto K. Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere. Applied Catalysis: General, 1998, 178(1): 73–83
https://doi.org/10.1016/S0926-860X(98)00120-3
26 Widayatno W B, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A, Abudula A. Upgrading of bio-oil from biomass pyrolysis over Cu-modified- b-zeolite catalyst with high selectivity and stability. Applied Catalysis B: Environmental, 2016, 186: 166–172
https://doi.org/10.1016/j.apcatb.2016.01.006
27 Miao S, Wang Y, Ma D, Zhu Q, Zhou S, Su L, Tan D, Bao X. Effect of Ag+ cations on nonoxidative activation of methane to C2-hydrocarbons. Journal of Physical Chemistry B, 2004, 108(46): 17866–17871
https://doi.org/10.1021/jp047209+
28 He X, Huang X, Wang Z, Yan Y. The role of silver species on the hydrothermal stability of zeolite catalysts. Microporous and Mesoporous Materials, 2011, 142(1): 398–403
https://doi.org/10.1016/j.micromeso.2010.12.029
29 Wang G L, Wu W, Zan W, Bai X F, Wang W J, Qi X, Kikhtyanin O V. Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1580–1586
https://doi.org/10.1016/S1003-6326(15)63761-X
30 Hodala J L, Halgeri A B, Shanbhag G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: Role of crystal size and acidity. Applied Catalysis A, General, 2014, 484: 8–16
https://doi.org/10.1016/j.apcata.2014.07.006
31 Zhang P Q, Guo X W, Guo H C, Wang X S. Study of the performance of modified nano-scale ZSM-5zeolite on olefins reduction in FCC gasoline. Journal of Molecular Catalysis A Chemical, 2007, 261(2): 139–146
https://doi.org/10.1016/j.molcata.2006.08.012
32 Stocker M. Methanol-to hydrocarbons: Catalystic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1-2): 3–48
https://doi.org/10.1016/S1387-1811(98)00319-9
33 Bisacrdi J A, Meitaner G D, Iglesia E. Structure and density of active Zn species in Zn/HZSM-5 propane aromatization catalyst. Journal of Catalysis, 1998, 179(1): 192–202
https://doi.org/10.1006/jcat.1998.2177
34 Lucas A, Canizares P, Duran A, Carrero A. Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity. Applied Catalysis: General, 1997, 154(1-2): 221–240
https://doi.org/10.1016/S0926-860X(96)00367-5
35 Abubakar S M, Marcus D M, Lee J C, Ehresmann J O, Chen C Y, Kletnieks P W, Guenther D R, Hayman M, Pavlova M, Nicholas J B, Haw J F. Structural and mechnistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion. Langmuir, 2006, 22(10): 4846–4852
https://doi.org/10.1021/la0534367
36 Sahoo S K, Viswanadham N, Ray N, Gupta J K, Singh I D. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization. Applied Catalysis A, General, 2001, 205(1): 1–10
https://doi.org/10.1016/S0926-860X(00)00543-3
[1] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[2] Youhao Xu, Shouye Cui. A novel fluid catalytic cracking process for maximizing iso-paraffins: From fundamentals to commercialization[J]. Front. Chem. Sci. Eng., 2018, 12(1): 9-23.
[3] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[4] YAN Pingxiang, MENG Xianghai, GAO Jinsen, XU Chunming, SUI Zhiyu. Study on reformulation of fluid catalytic cracking gasoline and increasing production of light olefins[J]. Front. Chem. Sci. Eng., 2008, 2(1): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed