Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    0, Vol. Issue () : 293-304    https://doi.org/10.1007/s11705-017-1660-0
VIEWS & COMMENTS
Combining innovative science and policy to improve air quality in cities with refining and chemicals manufacturing: The case study of Houston, Texas, USA
David T. Allen()
University of Texas Austin, Department of Chemical Engineering and Center for Energy and Environmental Resources, Austin, TX 78759, USA
 Download: PDF(967 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In Houston, a combination of urban emissions from a city of 4 million people, coupled with emissions from extensive petroleum refining and chemical manufacturing, leads to conditions for photochemistry that are unique in the United States, and historically, the city had experienced some of the highest ozone concentrations recorded in the United States. Large air quality field studies (the Texas Air Quality Studies or TexAQS I and II) were conducted to determine root causes of the high ozone concentrations. Hundreds of air quality investigators, from around the world, deployed instruments on aircraft, on ships, and at fixed ground sites to make extensive air quality measurements; detailed photochemical modeling was used to interpret and assess the implications of the measurements. The Texas Air Quality Studies revealed that both continuous and episodic emissions of light alkenes, which came to be called highly reactive volatile organic compounds, played a critical role in the formation of ozone and other photochemical oxidants in the region. Understanding and quantifying the role of these emissions in regional air quality required innovations in characterizing emissions and in photochemical modeling. Reducing emissions required innovative policy approaches. These coupled scientific and policy innovations are described, and the result, substantially cleaner air for Houston, is documented. The lessons learned from the Houston air quality experience are relevant to cities with similar population and industrial profiles around the world.

Keywords ozone      air quality      highly reactive volatile organic compounds      Houston     
Corresponding Author(s): David T. Allen   
Just Accepted Date: 10 May 2017   Online First Date: 14 July 2017    Issue Date: 23 August 2017
 Cite this article:   
David T. Allen. Combining innovative science and policy to improve air quality in cities with refining and chemicals manufacturing: The case study of Houston, Texas, USA[J]. Front. Chem. Sci. Eng., 0, (): 293-304.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1660-0
https://academic.hep.com.cn/fcse/EN/Y0/V/I/293
Fig.1  Ground monitoring stations for air pollutants (red squares with yellow highlights). (a) Houston (upper red square) and Texas City/Galveston (lower red square), in southeast Texas; (b) Dallas-Fort Worth, in north-central Texas (data and detailed site identifiers at Texas Commission on Environmental Quality (TCEQ) [1])
Fig.2  Ozone concentrations recorded by multiple ground monitors during a high ozone day (Oct. 23, 2003) in (a) Houston, and (b) Dallas-Fort Worth (Aug. 7, 2003). Each line represents data from a continuous air monitoring station, identified by number; site numbers are available at the TCEQ [1]
Fig.3  Ozone concentrations recorded by multiple ground monitors during a high ozone day (Oct. 23, 2003) in Houston. Ozone concentrations are shown for 4 times of day and concentrations between monitoring sites are interpolated. (pink region corresponds to O3>180 ppb; red>150 ppb; detailed data are available in Fig. 2)
Date (2000)Number of stations exceeding 125 ppb ozone /(1-h avg.)Max observed ozone conc. /(1-h avg.)Max observed 1-h rise /(ppb·h?1)Max observed 1-h fall /(ppb·h?1)
Aug. 1711503937
Aug. 1811301743
Aug. 1911464838
Aug. 2191538671
Aug. 25121949169
Aug. 2611403942
Aug. 2931464155
Aug. 3071994996
Aug. 31101684771
Sept. 121634852
Sept. 211252448
Sept. 311272739
Sept. 421456968
Sept. 531855541
Sept. 611563023
Sept. 1892259070
Tab.1  Days during the TexAQS 1 sampling period when ground monitors recorded rapid ozone increases and decreases [2]
Fig.4  Rapid ozone formation (P(O3)>50 ppb/h) observed in the Houston area during TexAQS I, particularly in the industrial corridor north and northwest of Galveston Bay (blue outline) [3]
Fig.5  Comparison of ozone productivities from data taken in power plant, urban and petrochemical plumes. The co-location of anthropogenic reactive volatile organic compounds (VOC) with NOx in the Ship Channel plume leads to rapid ozone formation in very high yield [4]
Fig.6  VOC and highly reactive volatile organic compounds (HRVOC) emission events in the Houston-Galveston region; data are shown for the first year of emission event reporting by hour (8760 h in a year); the horizontal red line in each time series shows the level of the annual average VOC or HRVOC emissions from all industrial sources in the Houston-Galveston region; multiple hours during the year include emission events where releases from a single facility exceed annual average emissions from all facilities in the region [11]
Fig.7  3-D photochemical grid model simulation of an ozone episode on 30 August 2000, performed using the comprehensive air quality model with extensions at a 1-km grid resolution; the upper plot (a) shows the base case simulation (peak ozone concentration of 150 ppb) with no emission event; the lower plot (b) shows the ozone concentrations predicted if a 10000 lb/h, 2 h reactive olefin release is added to the base case. The peak ozone concentration in the simulation with the release is in excess of 200 ppb, more than 50 ppb higher than in the base case [11]
Fig.8  Monte Carlo simulation of ozone impacts of 763 emission events in Houston, showing that only a subset of emission events lead to large changes in ozone concentrations, however, some events can have ozone impacts in excess of 50 ppb [12]
Fig.9  Distributions of ethylene concentrations measured at two closely located sites in 2000 (LaPorte sampling site) and 2006 (Barbour’s Cut (BC) sampling site). Mean concentrations of ethylene were reduced by 60%, however, more significantly, the very highest concentrations were reduced by more than an order of magnitude [19]
Fig.10  Trends in population and ozone design values in Houston over the past 25 years [20]. Ozone design values decreased, despite increases in population; two ozone design values are shown: design values based on eight hour averages of ozone concentrations, which are the design values used in the most recent NAAQS, and design values based on one hour averages of ozone concentrations, which were the design values used in standards prior to 1997
1 Texas Commission on Environmental Quality. 2016, https://www.tceq.texas.gov/cgi-bin/compliance/monops/select_summary.pl
2 University of Texas. Accelerated science evaluation, overview. 2002, 
3 Kleinman L I, Daum P H, Imre D, Lee Y N, Nunnermacker L J, Springston S R, Weinstein-Lloyd J, Rudolph J. Ozone production rate and hydrocarbon reactivity in 5 urban areas: A cause of high ozone concentration in Houston. Geophysical Research Letters, 2002, 29(10): 1467
https://doi.org/10.1029/2001GL014569
4 Ryerson T B, Trainer M, Angevine W M, Brock C A, Dissly R W, Fehsenfeld F C, Frost G J, Goldan P D, Holloway J S, Hubler G, et al. Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston,Texas. Journal of Geophysical Research, 2003, 108(D8): 4249
https://doi.org/10.1029/2002JD003070
5 University of Texas. Accelerated science evaluation, atmospheric chemistry version 2.0. 2002, 
6 University of Texas. Accelerated science evaluation, emission inventories version 3.0. 2002, 
7 University of Texas. Accelerated science evaluation, meteorology version 2.0. 2002, 
8 University of Texas. Accelerated science evaluation, air quality modeling version 1.3. 2002, 
9 TAC (Texas Administrative Code). Environmental Quality, Part 1 Texas Commission on Environmental Quality, Chapter 101 General Air Quality Rules, 2002
10 Texas Commission on Environmental Quality. Status of electronic reporting of air emission incidents. 2003, 
11 Murphy C F, Allen D T. Hydrocarbon emissions from industrial release events in the Houston-Galveston area and their impact on ozone formation. Atmospheric Environment, 2005, 39(21): 3785–3798
https://doi.org/10.1016/j.atmosenv.2005.02.051
12 Nam J, Kimura Y, Vizuete W, Murphy C, Allen D T. Modeling the impacts of emission events on ozone formation in Houston, Texas. Atmospheric Environment, 2006, 40(28): 5329–5341
https://doi.org/10.1016/j.atmosenv.2006.05.002
13 Vizuete W, Kimura Y, Jeffries H, Allen D T. Modeling ozone formation from industrial emission events in Houston, Texas. Atmospheric Environment, 2008, 42(33): 7641–7650
https://doi.org/10.1016/j.atmosenv.2008.05.063
14 Webster M, Nam J, Kimura Y, Jeffries H, Vizuete W, Allen D T. The effect of variability in industrial emissions on ozone formation in Houston, Texas. Atmospheric Environment, 2007, 41(40): 9580–9593
https://doi.org/10.1016/j.atmosenv.2007.08.052
15 Wang L, Thompson T, McDonald-Buller E C, Webb A, Allen D T. Photochemical modeling of emissions trading of highly reactive volatile organic compounds (HRVOCs) in Houston, Texas. Part 1. Potential for ozone hot spot formation and reactivity based trading. Environmental Science & Technology, 2007, 41: 2095–2102
https://doi.org/10.1021/es061273i
16 Wang L, Thompson T, McDonald-Buller E C, Webb A, Allen D T. Photochemical modeling of emissions trading of highly reactive volatile organic compounds (HRVOCs) in Houston, Texas. Part 2. Incorporation of chlorine emissions. Environmental Science & Technology, 2007, 41(7): 2103–2107
https://doi.org/10.1021/es061276v
17 Torres V M, Herndon S, Kodesh Z, Nettles R, Allen D T. Industrial flare performance at low flow conditions: Part 1. Study overview. Industrial & Engineering Chemistry Research, 2012, 51: 12559–12568
https://doi.org/10.1021/ie202674t
18 Torres V M, Herndon S, Allen D T. Industrial flare performance at low flow conditions: Part 2. Air and steam assisted flares. Industrial & Engineering Chemistry Research, 2012, 51(39): 12569–12576
https://doi.org/10.1021/ie202675f
19 Parrish D D, Allen D T, Bates T S, Estes M, Fehsenfeld F C, Feingold G, Ferrare R, Hardesty R M, Meagher J F, Nielsen-Gammon J W, et al.. Overview of the second Texas air quality study (TexAQS II) and the gulf of Mexico atmospheric composition and climate study (GoMACCS ). Journal of Geophysical Research, D, Atmospheres, 2009, 114: D00F13
https://doi.org/10.1029/2009JD011842
20 Texas Commission on Environmental Quality. Air quality successes. 2015, 
21 Allen D T, Turner J R. Transport of atmospheric fine particulate matter. Part 1: Findings from recent field programs on the extent of regional transport within North America. Journal of the Air & Waste Management Association, 2008, 58(2): 254–264
https://doi.org/10.3155/1047-3289.58.2.254
22 Berlin S R, Langford A O, Estes M, Dong M, Parrish D D. Magnitude, decadal changes and impact of regional background ozone transported into the greater Houston, Texas area. Environmental Science & Technology, 2013, 47(24): 13985–13992
https://doi.org/10.1021/es4037644
23 Turner J R, Allen D T. Transport of atmospheric fine particulate matter: Part 2. Findings from recent field programs on the intraurban variability in fine particulate matter. Journal of the Air & Waste Management Association, 2008, 58(2): 196–215
https://doi.org/10.3155/1047-3289.58.2.196
[1] Hong Li, Fang Yi, Xingang Li, Xin Gao. Numerical modeling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(3): 602-614.
[2] Mehraneh Ghavami, Mostafa Aghbolaghy, Jafar Soltan, Ning Chen. Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides[J]. Front. Chem. Sci. Eng., 2020, 14(6): 937-947.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed