Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 24-31    https://doi.org/10.1007/s11705-017-1669-4
RESEARCH ARTICLE
Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions
Dongxu Han, Zhiguo Zhang(), Zongbi Bao, Huabin Xing, Qilong Ren()
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We have successfully prepared a series of Pd-Ni/TiO2 catalysts by a one-step impregnation-reduction method. Among these catalysts with different compositions of Ni and Pd, the one with the Ni:Pd ratio of 2.95 showed the best activity. Small monodispersed Pd-Ni bimetallic nanoparticles were loaded on the surface of titanium oxide nanopowder as confirmed with TEM and EDS mapping. The XPS analysis demonstrated that Pd exists as 31% Pd(II) species and 69% Pd(0) species and all nickel is Ni(II). The prepared Pd-Ni/TiO2 exhibited enhanced catalytic activity compared to an equal amount of Pd/TiO2 for Suzuki-Miyaura reactions together with excellent applicability and reusability.

Keywords Pd-Ni bimetallic nanoparticles      nanocatalysis      Suzuki-Miyaura reaction      titanium oxide     
Corresponding Author(s): Zhiguo Zhang,Qilong Ren   
Just Accepted Date: 19 June 2017   Online First Date: 26 September 2017    Issue Date: 26 February 2018
 Cite this article:   
Dongxu Han,Zhiguo Zhang,Zongbi Bao, et al. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1669-4
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/24
EntryAmount in the added precursorsICP-OES data
Pd /wt-%Ni /wt-%Ni : PdPd /wt-%Ni /wt-%Ni : Pd
I1.00.50.50.990.470.47
II1.01.01.00.940.910.97
III1.02.02.00.961.921.99
IV1.03.03.00.892.622.95
V1.05.05.00.844.355.20
Tab.1  ICP-OES data of the Pd-Ni/TiO2 catalysts
Fig.1  XRD patterns of the Pd-Ni/TiO2 catalysts, Pd/TiO2, Ni/TiO2, and TiO2 P25
Fig.2  (a) TEM image, (b) particle size distribution, (c) HR-TEM image of the Pd-Ni NPs, (d) HAADF-STEM image of one single Pd-Ni NP, and EDS mapping of (e) Pd and (f) Ni of the Pd-Ni/TiO2 IV catalyst
Fig.3  XPS results of (a) Pd 3d, (b) Ni 2p, (c) Ti 2p, and (d) O1s of the Pd-Ni/TiO2 IV catalyst
EntryCatalystYield /%b)
1TiO2?
2Ni/TiO2trace
3Pd/TiO286.2
4Pd-Ni/TiO2 I91.3
5Pd-Ni/TiO2 II92.9
6Pd-Ni/TiO2 III94.3
7Pd-Ni/TiO2 IV97.2
8Pd-Ni/TiO2 V93.8
Tab.2  Catalyst survey for the Suzuki-Miyaura coupling reaction of iodobenzene and 4-methylbenzeneboronic acid a)
Fig.4  Recyclability of the Pd-Ni/TiO2 IV catalyst in the Suzuki-Miyaura coupling reaction of iodobenzene with 4-methylbenzeneboronic acid. Yields were determined by HPLC on the basis of 4-methylbiphenyl
Fig.5  (a) TEM image, (b) particle size distribution, (c) HR-TEM image of the Pd-Ni NPs, (d) HAADF-STEM image of one single Pd-Ni NP, and EDS mapping of (e) Pd and (f) Ni of the Pd-Ni/TiO2 IV catalyst after four cycles
Fig.6  XPS results of (a) Pd 3d, (b) Ni 2p of the Pd-Ni/TiO2 IV catalyst after four cycles, (c) and (d)
EntryXR1R2Yield /%b)
1IHOCH399
2IHCOCH399
3Ip-COCH3H99
4Ip-OCH3H99
5Im-OCH3H96
6Io-OCH3H89
7BrHCH391
8ClHCH311
9Ip-ClH98
Tab.3  Substrate scope of the Suzuki-Miyaura coupling reaction catalyzed by Pd-Ni/TiO2 IVa)
1 Crane E A, Scheidt K A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angewandte Chemie International Edition, 2010, 49(45): 8316–8326
https://doi.org/10.1002/anie.201002809
2 Dumas A, Spicer C D, Gao Z, Takehana T, Lin Y A, Yasukohchi T, Davis B G. Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation. Angewandte Chemie International Edition, 2013, 52(14): 3916–3921
https://doi.org/10.1002/anie.201208626
3 Maluenda I, Navarro O. Recent developments in the Suzuki-Miyaura reaction: 2010‒2014. Molecules (Basel, Switzerland), 2015, 20(5): 7528–7557
https://doi.org/10.3390/molecules20057528
4 Miyaura N, Suzuki A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Chemical Communications, 1979, 19(19): 866–867
https://doi.org/10.1039/c39790000866
5 Rossi R, Bellina F, Lessi M, Manzini C, Marianetti G A, Perego L. Recent applications of phosphane-based palladium catalysts in Suzuki-Miyaura reactions involved in total syntheses of natural products. Current Organic Chemistry, 2015, 19(14): 1302–1409
https://doi.org/10.2174/1385272819666150506230050
6 Yamaguchi J, Yamaguchi A D, Itami K. C‒H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angewandte Chemie International Edition, 2012, 51(36): 8960–9009 doi:10.1002/anie.201201666
7 Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki-Miyaura coupling reaction from an externally added initiator unit. Journal of the American Chemical Society, 2007, 129(23): 7236–7237
https://doi.org/10.1021/ja070313v
8 Pagliaro M, Pandarus V, Ciriminna R, Béland F, Demma Carà P. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem, 2012, 4(4): 432–445
https://doi.org/10.1002/cctc.201100422
9 Que Y, Feng C, Zhang S, Huang X. Stability and catalytic activity of PEG-b-PS-capped gold nanoparticles: A matter of PS chain length. Journal of Physical Chemistry C, 2015, 119(4): 1960–1970
https://doi.org/10.1021/jp511850v
10 Chen J, Zhang Z, Bao Z, Su Y, Xing H, Yang Q, Ren Q. Functionalized metal-organic framework as a biomimetic heterogeneous catalyst for transfer hydrogenation of imines. ACS Applied Materials & Interfaces, 2017, 9(11): 9772–9777
https://doi.org/10.1021/acsami.7b00562
11 Chtchigrovsky M, Lin Y, Ouchaou K, Chaumontet M, Robitzer M, Quignard F, Taran F. Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki-Miyaura reaction. Chemistry of Materials, 2012, 24(8): 1505–1510
https://doi.org/10.1021/cm3003595
12 Jiang B, Song S, Wang J, Xie Y, Chu W, Li H, Xu H, Tian C, Fu H. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C‒C coupling reactions. Nano Research, 2014, 7(9): 1280–1290
https://doi.org/10.1007/s12274-014-0492-1
13 Sun J, Fu Y, He G, Sun X, Wang X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2015, 165: 661–667
https://doi.org/10.1016/j.apcatb.2014.10.072
14 Zhang L, Feng C, Gao S, Wang Z, Wang C. Palladium nanoparticle supported on metal-organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catalysis Communications, 2015, 61: 21–25
https://doi.org/10.1016/j.catcom.2014.12.004
15 Ohtaka A, Sansano J M, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D. Palladium and bimetallic palladium-nickel nanoparticles supported on multiwalled carbon nanotubes: Application to carbon-carbon bond-forming reactions in water. ChemCatChem, 2015, 7(12): 1841–1847
https://doi.org/10.1002/cctc.201500164
16 Song H, Zhu Q, Zheng X, Chen X. One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: An efficient recyclable catalyst for Suzuki coupling reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(19): 10368–10377
https://doi.org/10.1039/C5TA00280J
17 Hu J, Yang Q, Yang L, Zhang Z, Su B, Bao Z, Ren Q, Xing H, Dai S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catalysis, 2015, 5(11): 6724–6731
https://doi.org/10.1021/acscatal.5b01690
18 Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y. Monodispersed Pd-Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorganic Chemistry, 2011, 50(6): 2046–2048
https://doi.org/10.1021/ic102263b
19 Cai S, Wang D, Niu Z, Li Y. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese Journal of Catalysis, 2013, 34(11): 1964–1974
https://doi.org/10.1016/S1872-2067(12)60701-3
20 Gu J, Zhang Y W, Tao F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews, 2012, 41(24): 8050–8065
https://doi.org/10.1039/c2cs35184f
21 Chen T, Rodionov V O. Controllable catalysis with nanoparticles: Bimetallic alloy systems and surface adsorbates. ACS Catalysis, 2016, 6(6): 4025–4033
https://doi.org/10.1021/acscatal.6b00714
22 Shaabani A, Mahyari M. PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(32): 9303–9311
https://doi.org/10.1039/c3ta11706e
23 Nath Dhital R,  Kamonsatikul C, Somsook E, Sakurai H. Bimetallic gold-palladium alloy nanoclusters: An effective catalyst for Ullmann coupling of chloropyridines under ambient conditions. Catalysis Science & Technology, 2013, 3(11): 3030–3035
https://doi.org/10.1039/c3cy00303e
24 Tan L, Wu X, Chen D, Liu H, Meng X, Tang F. Confining alloy or core-shell Au-Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(35): 10382–10388
https://doi.org/10.1039/c3ta11749a
25 Alonso A, Shafir A, Macanás J, Vallribera A, Muñoz M, Muraviev D N. Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants. Catalysis Today, 2012, 193(1): 200–206
https://doi.org/10.1016/j.cattod.2012.02.003
26 Han D, Bao Z, Xing H, Yang Y, Ren Q, Zhang Z. Fabrication of plasmonic Au-Pd alloy nanoparticles for photocatalytic Suzuki-Miyaura reactions under ambient conditions. Nanoscale, 2017, 9(18): 6026–6032
https://doi.org/10.1039/C7NR01950E
27 Wilson D A, Wilson C J, Rosen B M, Percec V. Two-step, one-pot Ni-catalyzed neopentylglycolborylation and complementary Pd/Ni-catalyzed cross-coupling with aryl halides, mesylates, and tosylates. Organic Letters, 2008, 10(21): 4879–4882
https://doi.org/10.1021/ol801972f
28 Son S U, Jang Y, Park J, Na H B, Park H M, Yun H J, Lee J, Hyeon T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Journal of the American Chemical Society, 2004, 126(16): 5026–5027
https://doi.org/10.1021/ja039757r
29 Heshmatpour F, Abazari R, Balalaie S. Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron, 2012, 68(14): 3001–3011
https://doi.org/10.1016/j.tet.2012.02.028
30 Takenaka S, Shigeta Y, Tanabe E, Otsuka K. Methane decomposition into hydrogen and carbon Nanofibers over supported Pd-Ni catalysts: Characterization of the catalysts during the reaction. Journal of Physical Chemistry B, 2004, 108(23): 7656–7664
https://doi.org/10.1021/jp0377331
31 Feng L, Chong H, Li P, Xiang J, Fu F, Yang S, Yu H, Sheng H, Zhu M. Pd-Ni alloy nanoparticles as effective catalysts for Miyaura-Heck coupling reactions. Journal of Physical Chemistry C, 2015, 119(21): 11511–11515
https://doi.org/10.1021/jp510988m
32 Xiang J, Li P, Chong H, Feng L, Fu F, Wang Z, Zhang S, Zhu M. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Research, 2014, 7(9): 1337–1343
https://doi.org/10.1007/s12274-014-0498-8
33 Xia J, Fu Y, He G, Sun X, Wang X. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Applied Catalysis B: Environmental, 2017, 200: 39–46
https://doi.org/10.1016/j.apcatb.2016.06.066
34 Metin Ö, Ho S F, Alp C, Can H, Mankin M N, Gültekin M S, Chi M, Sun S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Research, 2013, 6(1): 10–18
https://doi.org/10.1007/s12274-012-0276-4
35 Kim M R, Choi S H. One-step synthesis of Pd-M/ZnO (M= Ag, Cu, and Ni) catalysts by irradiation and their use in hydrogenation and Suzuki reaction. Journal of Nanomaterials, 2009, 2009: e302919
36 Kim S J, Oh S D, Lee S, Choi S H. Radiolytic synthesis of Pd-M (M= Ag, Ni, and Cu)/C catalyst and their use in Suzuki-type and Heck-type reaction. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 449–456
https://doi.org/10.1016/j.jiec.2008.02.006
37 Han F S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chemical Society Reviews, 2013, 42(12): 5270–5298
https://doi.org/10.1039/c3cs35521g
[1] FCE-17014-OF-HD_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed