Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 184-193    https://doi.org/10.1007/s11705-017-1678-3
RESEARCH ARTICLE
Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer
Kimthet Chhouk1,2(), Wahyudiono3, Hideki Kanda3, Shin-Ichro Kawasaki4, Motonobu Goto3
1. Department of Chemical Engineering, Nagoya University, Nagoya 464-8603, Japan
2. Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Phnom Penh, Cambodia
3. Department of Materials Process Engineering, Nagoya University, Nagoya 464-8603, Japan
4. Research Institute for Chemical Engineering Process Technology, National Institute of Advanced Industrial Science and Technology, Sendai 983-8551, Japan
 Download: PDF(607 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Curcumin is a hydrophobic polyphenol compound exhibiting a wide range of biological activities such as anti-inflammatory, anti-bacterial, anti-fungal, anti-carcinogenic, anti-human immunodeficiency virus, and anti-microbial activity. In this work, a swirl mixer was employed to produce the micronized curcumin with polyvinylpyrrolidone (PVP) by the supercritical anti-solvent process to improve the bioavailability of curcumin. The effects of operating parameters such as curcumin/PVP ratio, feed concentration, temperature, pressure, and CO2 flow rate were investigated. The characterization and solubility of particles were determined by using scanning electron microscopy, Fourier Transform Infrared spectroscopy, and ultra-violet-visible spectroscopy. The result shows that the optimal condition for the production of curcumin/PVP particles is at curcumin/PVP ratio of 1:30, feed concentration of 5 mg·mL1, temperature of 40 °C, pressure of 15 MPa, and CO2 flow rate of 15 mL·min1. Moreover, the dissolution of curcumin/PVP particles is faster than that of raw curcumin.

Keywords micronization      curcumin      polyvinylpyrrolidone      supercritical anti-solvent      swirl mixer     
Corresponding Author(s): Kimthet Chhouk,Motonobu Goto   
Just Accepted Date: 17 August 2017   Online First Date: 03 November 2017    Issue Date: 26 February 2018
 Cite this article:   
Kimthet Chhouk,Wahyudiono,Hideki Kanda, et al. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer[J]. Front. Chem. Sci. Eng., 2018, 12(1): 184-193.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1678-3
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/184
Fig.1  Schematic diagram of the SAS process with a swirl mixer
Fig.2  SEM images of (A) raw curcumin, (B) PVP, and (C) curcumin/PVP particles
Fig.3  Particle size distributions at different operating conditions: (A) curcumin:PVP ratio, (B) concentration, (C) temperature, (D) pressure, and (E) flow rate of CO2
Fig.4  SEM images of curcumin/PVP particles at feed concentrations of (A) 1:10, (B) 1:20, and (C) 1:30
Fig.5  SEM images of curcumin/PVP particles at feed concentrations of (A) 1 mg·mL1, (B) 5 mg·mL1, and (C) 10 mg·mL1
Fig.6  SEM images of curcumin/PVP particles at temperatures of (A) 30 °C, (B) 40 °C, and (C) 50 °C
Fig.7  SEM images of curcumin/PVP particles at pressures of (A) 10 MPa, (B) 15 MPa, and (C) 20 MPa
Fig.8  SEM image of curcumin/PVP particles at CO2 flow rate of (A) 10 mL·min1, (B) 15 mL·min1, (C) 20 mL·min1
Fig.9  FTIR spectra of raw curcumin, raw PVP and curcumin/PVP particles
Fig.10  (A) Image of raw curcumin and curcumin/PVP particles and (B) UV spectra of raw curcumin and curcumin/PVP particles in aqueous solution after 12 h
1 Moghadamtousi S Z,  Kadir H A,  Hassandarvish P,  Tajik H,  Abubakar S,  Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research Internaitonal, 2014, 2014: 1–12
2 Anand P, Kunnumakkara  A B, Newman  R A, Aggarwal  B B. Bioavailability of curcumin: Problems and promise. Molecular Pharmaceutics, 2007, 4(6): 807–818
https://doi.org/10.1021/mp700113r
3 Montes A, Gordillo  M D, Pereyra  C, Martínez de la Ossa  E J. Polymer and ampicillin co-precipitation by supercritical antisolvent process. Journal of Supercritical Fluids, 2012, 63: 92–98
https://doi.org/10.1016/j.supflu.2012.01.001
4 Fernández-Ponce M T,  Masmoudi Y,  Djerafi R,  Casas L,  Mantell C,  Monrtínez de la Ossa  E, Badens E. Particle design applied to quercetin using supercritical anti-solvent techniques. Journal of Supercritical Fluids, 2015, 105: 119–127
https://doi.org/10.1016/j.supflu.2015.04.014
5 Adami R, Capua  A D, Reverchon  E. Supercritical assisted atomization for the production of curcumin-biopolymer microspheres. Powder Technology, 2017, 305: 455–461
https://doi.org/10.1016/j.powtec.2016.10.020
6 Zabihi F, Xin  N, Jia J,  Chen T, Zhao  Y. High yield and high loading preparation of curcumin-PLGA nanoparticles using a modified supercritical antisolvent technique. Industrial & Engineering Chemistry Research, 2014, 53(15): 6569–6574
https://doi.org/10.1021/ie404215h
7 Ha E S, Choo  G H, Beak  I H, Kim  M S. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical anti-solvent coprecipitation. Molecules (Basel, Switzerland), 2014, 19(12): 20325–20339
https://doi.org/10.3390/molecules191220325
8 Zahran F, Cabañas  A, Cheda J A R,  Renuncio J A R,  Pando C. Dissolution rate enhancement of anti-inflammatory drug diflunisal by coprecipitation with a biocompaticle polymer using carbon dioxide as a supercritical fluid antisolvent. Journal of Supercritical Fluids, 2014, 88: 56–65
https://doi.org/10.1016/j.supflu.2014.01.015
9 Prosapio V, De Macro  I, Scognamiglio M,  Reverchon E. Folic acid-PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chemical Engineering Journal, 2015, 277: 286–294
https://doi.org/10.1016/j.cej.2015.04.149
10 Kurniawansyah F, Mammucari  R, Foster N R. Inhalable curcumin formulations by supercritical technology. Powder Technology, 2015, 284: 289–298
https://doi.org/10.1016/j.powtec.2015.04.083
11 Prosapio V, De Marco  I, Reverchon E. PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chemical Engineering Journal, 2016, 292: 264–275
https://doi.org/10.1016/j.cej.2016.02.041
12 Montes A, Wehner  L, Pereyra C,  Martínez De La Ossa E J. Generation of microparticles of ellagic acid by supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 116: 101–110
https://doi.org/10.1016/j.supflu.2016.05.019
13 Prosapio V, Reverchon  E, De Marco I. Formulation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. Journal of Supercritical Fluids, 2016, 118: 19–26
https://doi.org/10.1016/j.supflu.2016.07.023
14 Montes A, Wehner  L, Pereyra C,  De La Ossa E J M. Mangiferin nanoparticles precipitation by supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 112: 44–50
https://doi.org/10.1016/j.supflu.2016.02.008
15 Xie M, Li  Y, Zao Z,  Chen A, Li  J, Hu J,  Li G, Li  Z. Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. Journal of Supercritical Fluids, 2015, 103: 1–9
https://doi.org/10.1016/j.supflu.2015.04.021
16 Jia J, Song  N, Gai Y,  Zhang L,  Zhao Y. Release-controlled curcumin proliposome produced by ultrasound-assisted supercritical antisolvent method. Journal of Supercritical Fluids, 2016, 113: 150–157
https://doi.org/10.1016/j.supflu.2016.03.026
17 Pedro A S, Villa  S D, Caliceti  P, De Melo S A B V,  Albuquerque E C,  Bertucco A,  Salmaso S. Curcumin-loaded solid lipid particles by PGSS technology. Journal of Supercritical Fluids, 2016, 107: 534–541
https://doi.org/10.1016/j.supflu.2015.07.010
18 Baldino L, Cardea  S, Reverchon E. Biodegradable membranes loaded with curcumin to be used as engineered independent devices in active packaging. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 518–526
https://doi.org/10.1016/j.jtice.2016.12.020
19 Kawasaki S, Sue  K, Ookawara R,  Wakashima Y,  Suzuki A. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method. Journal of Oleo Science, 2010, 59(10): 557–562
https://doi.org/10.5650/jos.59.557
20 Patomchaiviwat V, Paeratakul  O, Kulvanich P. Formation of inhalable rifampicin-polyL-lactide) microparticles by supercritical anti-solvent process. America Association of Pharmaceutical Scientists, 2008, 9(4): 1119–1129
21 Reverchon E, De Marcro  I, Della Porta G. Tailoring of nano-and micro-particle of some superconductor precursors by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2002, 23(1): 81–87
https://doi.org/10.1016/S0896-8446(01)00129-2
22 De Marco I, Reverchon  E. Influence of pressure, temperature, and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. Journal of Supercritical Fluids, 2011, 58(2): 295–302
https://doi.org/10.1016/j.supflu.2011.06.005
23 Anwar M, Ahmad  I, Warsi M H,  Mohapatra S,  Ahmad N,  Akhter S,  Ali A, Almad  F J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96: 162–172
https://doi.org/10.1016/j.ejpb.2015.07.021
24 Li Y, Yu  Y, Wang H,  Zhao F. Effect of process parameters on the recrystallization and the size control of puerarin using the supercritical fluid antisolvent process. Asian Journal of Pharmaceutical Sciences, 2016, 11(2): 281–291
https://doi.org/10.1016/j.ajps.2015.12.001
25 Li W, Liu  G, Li L,  Wu J, Lü  Y, Jiang Y. The effect of process parameters on co-precipitation of paclitaxel and Poly(L-lactic acid) by supercritical antisolvent. Chinese Journal of Chemical Engineering, 2012, 20(4): 803–813
https://doi.org/10.1016/S1004-9541(11)60251-6
26 Miguel F, Martín  A, Gamse T,  Cocero M J. Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. Journal of Supercritical Fluids, 2006, 36(3): 225–235
https://doi.org/10.1016/j.supflu.2005.06.009
27 Su C, Lo  W, Lien L. Micronization of fluticasone propionate using supercritical antisolvent process. Chemical Engineering & Technology, 2011, 34(4): 535–541
https://doi.org/10.1002/ceat.201000462
28 Careno S, Boutin  O, Badens E. Drug recrystallization using supercritical anti-solvent (SAS) process with impinging jets: Effect of process parameters. Journal of Crystal Growth, 2012, 342(1): 34–41
https://doi.org/10.1016/j.jcrysgro.2011.06.059
29 Kim M, Lee  S, Park J,  Woo J, Hwang  S. Micronization of cilostazol using supercritical antisolvent (SAS) process: Effect of process parameters. Powder Technology, 2007, 177(2): 64–70
https://doi.org/10.1016/j.powtec.2007.02.029
30 Reverchon E. Supercritical antisolvent precipitation of micro-and nano-particles. Journal of Supercritical Fluids, 1999, 15(1): 1–21
https://doi.org/10.1016/S0896-8446(98)00129-6
31 Martín A, Mattea  F, Gutiérrez K,  Miguel F,  Cocero M J. Co-precipitation of carotenoids and bio-polymers with supercritical anti-solvent process. Journal of Supercritical Fluids, 2007, 41(1): 138–147
https://doi.org/10.1016/j.supflu.2006.08.009
32 Yen F, Wu  T, Tzeng C W,  Lin L, Lin  C. Curcumin nanoparticle improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antithepatoma activities.  Journal of Agriculture and Food Chemistry, 2010, 58(12): 73–76-7382
33 Uzun I N, Sipahigil  O, Dinçer S. Coprecipitation of cefuroxime axetil-PVP composite microparticles by batch supercritical antisolvent process. Journal of Supercritical Fluids, 2011, 55(3): 1059–1069
https://doi.org/10.1016/j.supflu.2010.09.035
34 Perrut M, Jung  J, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part 1: Micronization of neat particles. International Journal of Pharmaceutics, 2005, 288(1): 3–10
https://doi.org/10.1016/j.ijpharm.2004.09.007
[1] Sunhui Chen,Qiuling Liang,Shuping Xie,Ergang Liu,Zhili Yu,Lu Sun,Meong Cheol Shin,Seung Jin Lee,Huining He,Victor C. Yang. Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 383-388.
[2] Xiaohang ZHANG,Shengnan HAN,Yan LI,Jianlan JIANG. Development of a multi-component drug from turmeric using central composite design[J]. Front. Chem. Sci. Eng., 2014, 8(3): 362-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed