Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (2) : 252-261    https://doi.org/10.1007/s11705-017-1683-6
RESEARCH ARTICLE
Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response
Yaodong Huang(), Shuxue Liu, Zhuofeng Xie, Zipei Sun, Wei Chai, Wei Jiang
Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
 Download: PDF(444 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two new series of 1,2,3-triazole derivatives, with and without iodo substitution, were synthesized and their gelation properties were measured. It was found that the iodo substitution at position 5 of triazole ring could greatly enhance the gelation ability. Scanning electron microscopy and X-ray diffraction reveal that the structures of the organogels from iodo and hydrogenous gelators are totally different. Iodo gels are selectively responsive to the stimuli of Hg2+, whereas hydrogenous gels can respond to Hg2+ and Cu2+. Moreover, the reversible gel-sol transition of hydrogenous gels can be controlled by redox reaction or tuned with suitable chemicals. The single crystal analysis of reference compound (C2) suggests that there are intermolecular and intramolecular non-classical hydrogen bonding interactions but no π-π interaction in hydrogenous gelator. The great difference between the two series of compounds results from the iodo effect and implies the existence of halogen bonding interaction in the iodo compounds.

Keywords organogelator      1,2,3-triazole derivatives      self-assembly      halogen bonding      cation response     
Corresponding Author(s): Yaodong Huang   
Just Accepted Date: 25 September 2017   Online First Date: 31 October 2017    Issue Date: 09 May 2018
 Cite this article:   
Yaodong Huang,Shuxue Liu,Zhuofeng Xie, et al. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response[J]. Front. Chem. Sci. Eng., 2018, 12(2): 252-261.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1683-6
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I2/252
Fig.1  Scheme 1 Two organogelators with unusual intermolecular C–I···O XB interaction in reference 26
Fig.2  Scheme 2 Synthetic route for compounds 1-6, C1 and C2. (a) n-RBr (CH3I was used for the synthesis of 4-methoxyl ethynylbenzene), K2CO3, DMF, 70–80 °C, 6 h; (b) trimethylsilylacetylene, CuI, Pd(Ph3P)2Cl2, THF, Et3N, r.t., 8 h; (c) K2CO3, THF, MeOH, r.t., 12 h; (d) CuCl, ICl, THF, Et3N, r.t., 48 h
Solvent 1 2 3 4 5 6
Petroleum ether G(1.5) G(1.1) G(0.8) P P P
n-Hexane G(2.0) G(1.6) G(1.2) I I I
n-Octane PG G(4.8) G(4.5) I P P
Cyclohexane PG G(4.6) G(4.1) I P P
MeOH PG G(2.5) G(2.0) I I I
EtOH G(1.5) G(1.2) G(0.8) G(4.0) G(3.2) G(3.0)
n-Butanol G(1.7) G(1.3) G(0.8) G(3.0) G(2.5) G(1.8)
n-Hexanol G(2.6) G(2.1) G(1.8) G(3.1) G(2.5) G(2.0)
Ethyl acetate S G(3.6) G(2.0) P P P
CH3CN G(1.3) G(0.7) G(0.4) P PG PG
Acetone G(3.4) G(2.7) G(2.0) P P P
DMF G(4.7) G(4.2) G(3.8) S S S
EtOEt P PG PG I I I
CCl4 G(4.2) G(3.6) G(3.0) VS VS P
CHCl2 S S S S S S
CHCl3 S S S S S S
THF S S S S S S
Toluene S S S S S S
Dioxane S S S P P P
Pyridine S S S P P P
Tab.1  Gelation properties of 16 in organic solventsa)
Fig.3  Perspective view of C2 showing 30% probability ellipsoids for the non-hydrogen atoms and the numbering scheme of the atoms in the molecule
Fig.4  The arrangement of two adjacent molecules of C2 showing intermolecular non-classical hydrogen bonding interaction
Fig.5  The crystal packing mode of C2 displaying non-classical hydrogen bonding interaction
D–H···A d(D–H)/nm d(H???A)/nm d(D???A)/nm Angle for DHA/(°)
C4–H4···O1 0.095 0.2924 0.352 121.9(10)
C6–H6···N1 0.095 0.2863 0.3414 118.0(10)
C12–H12···N1 0.095 0.2727 0.3632 159.4(11)
C12–H12···N2 0.095 0.2476 0.3358 154.4(11)
C10–H10B···N2 0.099 0.2821 0.3699 148.2(10)
C1–H1B···O2 0.098 0.2583 0.3444 146.6(11)
C17–H17B···O1 0.098 0.251 0.3372 146.7(12)
C9–H9···N1 0.095 0.2658 0.3494 147.1(11)
Tab.2  Non-classic hydrogen bonds and their angles of the compound C2
Fig.6  SEM images of xerogels from compounds 2, 3 and 5. (a) 3 in ethyl acetate; (b) 2 in acetonitrile; (c) 2 in CCl4; (d) 2 in DMF; (e) 2 in n-butanol; (f) 5 in n-butanol. All the gels have a concentration of 5.0% and were dried in atmosphere for 48 h to form xerogels
Fig.7  XRD patterns of the xerogels obtained from the gels of (a) 5 in n-butanol, (b) 2 in n-butanol, (c) 2 in CCl4, and (d) 2 in DMF
Fig.8  Temperature dependent 1H NMR spectra of gel 2 in CD3CN (10 mg/mL)
Fig.9  1H NMR spectra of 2 in CDCl3 at different concentrations
Fig.10  Reversible gel-sol transitions of 5/ethanol gel tuning by redox-reaction and different chemicals
Fig.11  UV absorption spectra of (a) 2 ethanol solution (5.5 × 105 mol/L) with different concentrations of Hg2+ and (b) 5 ethanol soltion (7.3 × 105 mol/L) with different concentrations of Cu2+ at room temperature
1 Sung S, Park S, Lee W J, Son J, Kim C H, Kim Y, Noh D Y, Yoon M H. Low-voltage flexible organic electronics based on high-performance sol-gel titanium dioxide dielectric. ACS Applied Materials & Interfaces, 2015, 7(14): 7456–7461
https://doi.org/10.1021/acsami.5b00281
2 Das A, Ghosh S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angewandte Chemie International Edition, 2014, 45(18): 2038–2054
https://doi.org/10.1002/anie.201307756
3 Babu S S, Praveen V K, Ajayaghosh A. Functional π-gelators and their applications. American Chemical Society, 2014, 114(4): 1973–2129
4 Han J, Song J, Hao Z, Yu H, Han J. Self-assembly of Schiff base organogelator with enhanced fluorescence emission. Chinese Journal of Chemistry, 2015, 33(1): 137–140
https://doi.org/10.1002/cjoc.201400519
5 Choi T J, Chang J Y. Preparation of thermochromic polymer nanocomposite films from polymerizable organogels of oligothiophene-based organogelators. Macromolecular Research, 2016, 24(12): 1055–1061
https://doi.org/10.1007/s13233-016-4148-8
6 Lüer L, Rajendran S K, Stoll T, Ganzer L, Rehault J, Coles D M, Lidzey D, Virgili T, Cerullo G. Lévy defects in matrix-immobilized J aggregates: Tracing intra-and intersegmental exciton relaxation. Journal of Physical Chemistry Letters, 2017, 8(3): 547–552
https://doi.org/10.1021/acs.jpclett.6b02704
7 Kumar R J, MacDonald J M, Singh T B, Waddington L J, Holmes A B. Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. Journal of the American Chemical Society, 2011, 133(22): 8564–8573
https://doi.org/10.1021/ja110858k
8 Kim H, Chang J Y. White light emission from a mixed organogel of lanthanide(III)-containing organogelators. RSC Advances, 2013, 3(6): 1774–1780
https://doi.org/10.1039/C2RA22908K
9 Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in monocomponent gel system by varying solvents, temperature and fluoride anion. Organic & Biomolecular Chemistry, 2016, 14(47): 11176–11182
https://doi.org/10.1039/C6OB02007K
10 Sun J, Xue P, Sun J, Gong P, Wang P, Lu R. Strong blue emissive nanofibers constructed from benzothizole modified tert-butyl carbazole derivative for the detection of volatile acid vapors. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(34): 8888–8894
https://doi.org/10.1039/C5TC02012C
11 Zhai Y, Chai W, Cao W W, Sun Z P, Huang Y D. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Frontiers of Chemical Science and Engineering, 2015, 9(4): 488–493
https://doi.org/10.1007/s11705-015-1503-9
12 Cheng H B, Li Z, Huang Y D, Liu L, Wu H C. A pillararene-based AIE-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS Applied Materials & Interfaces, 2017, 9(13): 11889–11894
https://doi.org/10.1021/acsami.7b00363
13 Zhao Z, Lam J W Y, Tang B Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9(18): 4564–4579
https://doi.org/10.1039/c3sm27969c
14 Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: From biomimetic chemistry to bio-inspired materials. Advanced Materials, 2013, 25(37): 5215–5256
https://doi.org/10.1002/adma.201302215
15 Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Metal- and anion-binding supramolecular gels. Chemical Reviews, 2010, 110(4): 1960–2004
https://doi.org/10.1021/cr9003067
16 Van Herrikhuyzen J, George S J, Vos M R J, Sommerdijk N A J M, Ajayaghosh A, Meskers S C J, Schenning A P H J. Self-assembled hybrid oligo(p-phenylenevinylene)-gold nanoparticle tapes. Angewandte Chemie, 2007, 46(11): 1825–1828
https://doi.org/10.1002/anie.200604225
17 Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie, 2004, 43(10): 1229–1233
https://doi.org/10.1002/anie.200352458
18 Suzuki M, Yumoto M, Kimura M, Shiraib H, Hanabusa K. Novel family of low molecular weight hydrogelators based on L-lysine derivatives. Chemical Communications, 2002, 33(8): 884–885
https://doi.org/10.1039/b200242f
19 Abdallah D J, Weiss R G. Organogels and low molecular-mass organic gelators. Advanced Materials, 2000, 12(17): 1237–1247
https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
20 Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Halogen-bonding-triggered supramolecular gel formation. Nature Chemistry, 2013, 5(1): 42–47
https://doi.org/10.1038/nchem.1496
21 Feng Y, Chen H, Liu Z X, He Y M, Fan Q H. A pronounced halogen effect on the organogelation properties of peripherally halogen functionalized poly(benzyl ether) dendrons. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(14): 4980–4990
https://doi.org/10.1002/chem.201504598
22 Bhattacharjee S, Bhattacharya S. Remarkable role of C–I···N halogen bonding in thixotropic ‘halo’gel formation. Langmuir, 2016, 32(17): 4270–4277
https://doi.org/10.1021/acs.langmuir.5b02597
23 Bertolani A, Pirrie L, Stefan L, Houbenov N, Haataja J S, Catalano L, Terraneo G, Giancane G, Valli L, Milani R, Ikkala O, Resnati G, Metrangolo P. Supramolecular amplification of amyloid self-assembly by iodination. Nature Communications, 2015, 6: 7574
https://doi.org/10.1038/ncomms8574
24 Huang Y, Zhang Y, Yuan Y, Cao W. Organogelators based on iodo 1,2,3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14): 2124–2133
https://doi.org/10.1016/j.tet.2015.02.044
25 Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561
https://doi.org/10.1007/s11705-016-1589-8
26 Huang Y D, Li H M, Li Z Y, Zhang Y, Cao W W, Wang L Y, Liu S X. Unusual C–I⋯O halogen bonding in triazole derivatives: Gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1): 311–321
https://doi.org/10.1021/acs.langmuir.6b03691
27 Wu Y M, Deng J, Li Y, Chen Q Y. Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(I) salt. Synthesis, 2005, 36(43): 1314–1318
https://doi.org/10.1055/s-2005-861860
28 Schulze B, Schubert U S. Beyond click chemistry—supramolecular interactions of 1,2,3-triazoles. Chemical Society Reviews, 2014, 43(8): 2522–2571
https://doi.org/10.1039/c3cs60386e
29 Janiak C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2000, 32(11): 3885–3896
https://doi.org/10.1039/b003010o
30 Linse P. Orientation-averaged benzene-benzene potential of mean force in aqueous solution. Journal of the American Chemical Society, 1993, 115(19): 8793–8797
https://doi.org/10.1021/ja00072a037
31 Lai L L, Wang C H, Hsieh W P, Lin H C. Synthesis and characterization of liquid crystalline molecules containing the ouinoline unit. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 1996, 287(1): 177–181
32 Bhalla V, Singh H, Kumar M, Prasad S K. Triazole-modified triphenylene derivative: Self-assembly and sensing applications. Langmuir, 2011, 27(24): 15275–15281
https://doi.org/10.1021/la203774p
[1] FCE-17028-OF-HY_suppl_1 Download
[1] Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
[2] Yawen Yao, Sabine Rosenfeldt, Kai Zhang. Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate[J]. Front. Chem. Sci. Eng., 2020, 14(3): 389-396.
[3] Aramballi J. Savyasachi, David F. Caffrey, Kevin Byrne, Gerard Tobin, Bruno D'Agostino, Wolfgang Schmitt, Thorfinnur Gunnlaugsson. Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate Eu(III) and Tb(III) cyclen complexes[J]. Front. Chem. Sci. Eng., 2019, 13(1): 171-184.
[4] Jie Zhou, Xuewen Du, Jiaqing Wang, Natsuko Yamagata, Bing Xu. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials[J]. Front. Chem. Sci. Eng., 2017, 11(4): 509-515.
[5] Shinobu Uemura,Kenki Sakata,Masashi Aono,Yusuke Nakamura,Masashi Kunitake. Two-dimensional self-assembly of melem and melemium cations at pH-controlled aqueous solution–Au(111) interfaces under electrochemical control[J]. Front. Chem. Sci. Eng., 2016, 10(2): 294-300.
[6] Yan Zhai,Wei Chai,Wenwen Cao,Zipei Sun,Yaodong Huang. Organogelators based on p-alkoxylbenzamide and their self-assembling properties[J]. Front. Chem. Sci. Eng., 2015, 9(4): 488-493.
[7] Zipei SUN,Xuelin DONG,Yan ZHAI,Ziyan Li,Yaodong HUANG. 2,5-Dialkoxylphenyl-1,3,4-oxadiazoles as efficient organogelators and their self-assembling property[J]. Front. Chem. Sci. Eng., 2014, 8(2): 219-224.
[8] YANG Zhifang, WU Jingao, YANG Yingkui, ZHOU Xingping, XIE Xiaolin. Control on self-assembly structures of rod-coil-rod (PANI)-(PEG)-(PANI) triblock copolymer[J]. Front. Chem. Sci. Eng., 2008, 2(1): 85-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed