Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (4) : 780-789    https://doi.org/10.1007/s11705-018-1733-8
RESEARCH ARTICLE
Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking
Shuman Xu1, Xiaoxiao Zhang1, Dangguo Cheng1(), Fengqiu Chen1, Xiaohong Ren2,3
1. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
3. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
 Download: PDF(446 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hierarchical ZSM-5 zeolite aggregates with different sizes of nanocrystals were synthesized using different amounts of the mesoporogen 3-aminopropyltriethoxysilane. The effect of the crystal size on the catalytic cracking of n-heptane was investigated and the Thiele modulus and effectiveness factor were used to determine the reaction rate-limiting step. The crystal size affected the textual properties of the catalysts but not the acidic properties of the catalysts. The reaction rate was first order with respect to the n-heptane concentration. Cracking over hierarchical zeolites with nanocrystal sizes larger than about 50 nm took place under transition-limiting conditions, whereas the reaction over hierarchical zeolites with nanocrystal sizes of 15 or 30 nm proceeded under reaction control conditions. Hierarchical ZSM-5 zeolite aggregates with smaller nanocrystals had better selectivity for light olefins which can be ascribed to the shorter diffusion path lengths and lower diffusion resistance in these catalysts. Furthermore, these catalysts had lower coking levels which can be attributed to the substantial number of mesopores which prevent the formation of coke precursors.

Keywords hierarchical ZSM-5      crystal size      catalytic cracking      Thiele modulus      effectiveness factor     
Corresponding Author(s): Dangguo Cheng   
Online First Date: 10 July 2018    Issue Date: 03 January 2019
 Cite this article:   
Shuman Xu,Xiaoxiao Zhang,Dangguo Cheng, et al. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Front. Chem. Sci. Eng., 2018, 12(4): 780-789.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1733-8
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I4/780
Fig.1  XRD patterns of ZSM-5 zeolites prepared with different amounts of APTES
Fig.2  SEM images of microporous and hierarchical ZSM-5 zeolites. (a) HZ-0, (b) HZ-1, (c) HZ-2, and (d) HZ-3
Fig.3  TEM images with nanocrystal size distribution charts of hierarchical and microporous ZSM-5 zeolites. (a) HZ-0, (b) HZ-1, (c) HZ-2, and (d) HZ-3
Fig.4  N2 adsorption-desorption isotherms of microporous and hierarchical ZSM-5 zeolites
Sample Crystal size /nm Specific surface area /m2·g?1 Pore volume /cm3·g?1 VMeso/ VTotal
SBET SEXT VMicro VMeso
HZ-0 393.6±63.8 336 80 0.131 0.094 0.445
HZ-1 50.3±9.2 398 100 0.144 0.142 0.516
HZ-2 29.8±6.4 417 193 0.114 0.184 0.577
HZ-3 14.8±3.6 436 200 0.120 0.225 0.701
Tab.1  Textural parameters of the HZ samples
Fig.5  NH3-TPD profiles of the HZ samples. (a) HZ-0, (b) HZ-1, (c) HZ-2 and (d) HZ-3
Sample Weak acid Strong acid Total acid amount
/mmol·g?1
Temperature /°C Amount
/mmol·g?1
Temperature /°C Amount /mmol·g?1
HZ-0 164 0.124 355 0.152 0.276
HZ-1 160 0.119 342 0.159 0.278
HZ-2 155 0.118 346 0.161 0.279
HZ-3 157 0.114 341 0.165 0.279
Tab.2  NH3-TPD results for the microporous and hierarchical ZSM-5 zeolites
Fig.6  The relationships between FA0DXA/W and CA0 (1 ? DXA/2) for n-heptane cracking over the prepared samples. (a) HZ-0, (b) HZ-1, (c) HZ-2 and (d) HZ-3; Reaction conditions: t = 923 K, WHSV= 2–8 h?1
Fig.7  Relationship between W/FA0 and –ln (1 ? XA)/CA0 in n-heptane cracking over the prepared samples. (a) HZ-0, (b) HZ-1, (c) HZ-2 and (d) HZ-3; Reaction conditions: t = 923 K, WHSV= 2–8 h?1
Sample D' /m2?s?1 Ea /kJ?mol?1 Deff /m2?s?1
ZSM-5 6.53 × 10?12 30.4 1.54 × 10?13
Tab.3  Activated diffusion parameters for n-heptane in ZSM-5 zeolites
Sample Crystal size Reaction rate constant Thiele modulus Effectiveness factor
/nm /(k/m3?s?1?kg?1) j h
HZ-0 393.6±63.8 6.16 × 10?3 1.731 0.54
HZ-1 50.3±9.2 6.30 × 10?3 0.216 0.98
HZ-2 29.8±6.4 6.33 × 10?3 0.130 0.99
HZ-3 14.8±3.6 6.41 × 10?3(intrinsic) 0.065 1.00
Tab.4  Reaction rate constants, Thiele modulus and effectiveness factors for the n-heptane cracking reactions at 923 K over ZSM-5 zeolites
Fig.8  Relationship between the Thiele modulus and the effectiveness factor for n-heptane cracking at 923 K over the prepared samples
Fig.9  Selectivity of light olefins and conversion of n-heptane over the prepared samples. Reaction conditions: t = 923 K, WHSV= 2.4 h?1.
Fig.10  Thermal gravimetric curves of the deactivated catalysts after being subjected to n-heptane cracking
1 S MSadrameli. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 2015, 140: 102–115
https://doi.org/10.1016/j.fuel.2014.09.034
2 S MSadrameli. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel, 2016, 173: 285–297
https://doi.org/10.1016/j.fuel.2016.01.047
3 YYoshimura, N Kijima, THayakawa, KMurata, KSuzuki, FMizukami, KMatano, TKonishi, TOikawa, MSaito, et al. Catalytic cracking of naphtha to light olefins. Catalysis Surveys from Japan, 2001, 4(2): 157–167
https://doi.org/10.1023/A:1011463606189
4 GWang, C M Xu, J S Gao. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production. Fuel Processing Technology, 2008, 89(9): 864–873
https://doi.org/10.1016/j.fuproc.2008.02.007
5 J SPlotkin. The changing dynamics of olefin supply/demand. Catalysis Today, 2008, 106(1): 10–14
6 J SJung, J W Park, G Seo. Catalytic cracking of n-octane over alkali-treated MFI zeolites. Applied Catalysis A: General, 2005, 288(1–2): 149–157
https://doi.org/10.1016/j.apcata.2005.04.047
7 S MAlipour. Recent advances in naphtha catalytic cracking by nano ZSM-5: A review. Chinese Journal of Catalysis, 2016, 37(5): 671–680
https://doi.org/10.1016/S1872-2067(15)61091-9
8 DLiu, W C Choi, N Y Kang, Y J Lee, H S Park, C H Shin, Y K Park. Inter-conversion of light olefins on ZSM-5 in catalytic naphtha cracking condition. Catalysis Today, 2014, 226: 52–66
https://doi.org/10.1016/j.cattod.2013.09.060
9 NRahimi, R Karimzadeh. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 2011, 398(1-2): 1–17
https://doi.org/10.1016/j.apcata.2011.03.009
10 R VBorm, M F Reyniers, J A Martens, G B Marin. Catalytic cracking of methylcyclohexane on FAU, MFI, and bimodal porous materials: Influence of acid properties and pore topology. Industrial & Engineering Chemistry Research, 2010, 49(21): 10486–10495
https://doi.org/10.1021/ie100429u
11 M ABari Siddiqui, A MAitani, M RSaeed, SAl-Khattaf. Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst. Topics in Catalysis, 2010, 53(19–20): 1387–1393
https://doi.org/10.1007/s11244-010-9598-1
12 KWakui, K Satoh, GSawada, KShiozawa, KMatano, KSuzuki, THayakawa, YYoshimura, KMurata, FMizukami. Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts. Catalysis Letters, 2002, 81(1–2): 83–88
https://doi.org/10.1023/A:1016064123823
13 PMagnoux, P Cartraud, SMignard, MGuisnet. Coking, aging, and regeneration of zeolites: III. Comparison of the deactivation modes of H-mordenite, HZSM-5, and HY during n-heptane cracking. Journal of Catalysis, 1987, 106(1): 242–250
https://doi.org/10.1016/0021-9517(87)90228-4
14 G TKokotailo, S LLawton, D HOlson, W MMeier. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438
https://doi.org/10.1038/272437a0
15 HKonno, R Ohnaka, JNishimura, TTago, Y Nakasaka, TMasuda. Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: Effect of reduced crystal size on the reaction of naphthenes. Catalysis Science & Technology, 2014, 4(12): 4265–4273
https://doi.org/10.1039/C4CY00733F
16 HKonno, T Tago, YNakasaka, ROhnaka, J INishimura, TMasuda. Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha. Microporous and Mesoporous Materials, 2013, 175(13): 25–33
https://doi.org/10.1016/j.micromeso.2013.03.016
17 HKonno, T Okamura, TKawahara, YNakasaka, TTago, T Masuda. Kinetics of n-hexane cracking over ZSM-5 zeolites-effect of crystal size on effectiveness factor and catalyst lifetime. Chemical Engineering Journal, 2012, 207–208(10): 490–496
https://doi.org/10.1016/j.cej.2012.06.157
18 TTago, H Konno, YNakasaka, TMasuda. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163
https://doi.org/10.1007/s10563-012-9141-4
19 A ARownaghi, F Rezaei, JHedlund. Selective formation of light olefin by n-hexane cracking over HZSM-5: Influence of crystal size and acid sites of nano- and micrometer-sized crystals. Chemical Engineering Journal, 2012, 191(19): 528–533
https://doi.org/10.1016/j.cej.2012.03.023
20 HMochizuki, T Yokoi, HImai, RWatanabe, SNamba, J NKondo, TTatsumi. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane. Microporous and Mesoporous Materials, 2011, 145(1–3): 165–171
https://doi.org/10.1016/j.micromeso.2011.05.011
21 TTago, H Konno, MSakamoto, YNakasaka, TMasuda. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes. Applied Catalysis A: General, 2011, 403(1–2): 183–191
https://doi.org/10.1016/j.apcata.2011.06.029
22 X XZhang, D G Cheng, F Q Chen, X L Zhan. n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores. Chemical Engineering Science, 2017, 168: 352–359
https://doi.org/10.1016/j.ces.2017.05.012
23 LYang, Z Liu, ZLiu, W YPeng, Y QLiu, C GLiu. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction. Chinese Journal of Catalysis, 2017, 38(4): 683–690
https://doi.org/10.1016/S1872-2067(17)62791-8
24 JZhou, Z Liu, LLi, Y GWang, H XGao, W MYang, YTang. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chinese Journal of Catalysis, 2013, 34(7): 1429–1433
https://doi.org/10.1016/S1872-2067(12)60602-0
25 H LJin, M B Ansari, E Y Jeong, S E Park. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. Journal of Catalysis, 2012, 291(7): 55–62
26 X HGao, Z C Tang, G X Lu, G Z Cao, D Li, Z GTan. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sciences, 2010, 12(7): 1278–1282
https://doi.org/10.1016/j.solidstatesciences.2010.04.020
27 QDeng, X W Zhang, L Wang, J JZou. Catalytic isomerization and oligomerization of endo-dicyclopentadiene using alkali-treated hierarchical porous HZSM-5. Chemical Engineering Science, 2015, 135(2): 540–546
https://doi.org/10.1016/j.ces.2014.08.060
28 J CGroen, J C Jansen, J A Moulijn, J Perez-Ramirez. Optimal aluminum-assisted mesoporosity development in MFI Zeolites by desilication. ChemInform, 2004, 35(45): 13062–13065
https://doi.org/10.1002/chin.200445244
29 H SCho, R Ryoo. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151(11): 107–112
https://doi.org/10.1016/j.micromeso.2011.11.007
30 L FWang, Z Zhang, C YYin, Z CShan, F SXiao. Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 2010, 131(1–3): 58–67
31 MChoi, H S Cho, R Srivastava, CVenkatesan, D HChoi, RRyoo. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
https://doi.org/10.1038/nmat1705
32 QXiao, Q S Yao, J Zhuang, GLiu, Y JZhong, W DZhu. A localized crystallization to hierarchical ZSM-5 microspheres aided by silane coupling agent. Journal of Colloid and Interface Science, 2013, 394(1): 604–610
https://doi.org/10.1016/j.jcis.2012.11.070
33 D PSerrano, J Aguado, GMorales, J MRodríguez, APeral, MThommes, J DEpping, B FChmelka. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654
https://doi.org/10.1021/cm801951a
34 D PSerrano, J Aguado, J MEscola, J MRodriguez, APeral. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. Journal of Materials Chemistry, 2008, 18(35): 4210–4218
https://doi.org/10.1039/b805502e
35 M M JTreacy, J BHiggins. Collection of Simulated XRD Powder Patterns for Zeolites.Amsterdam: Elsevier, 2001, 21: 388–389
36 D PSerrano, J Aguado, J MEscola, J MRodriguez, APeral. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chemistry of Materials, 2006, 18(10): 2462–2464
https://doi.org/10.1021/cm060080r
37 EKoohsaryan, M Anbia. Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 2016, 37(4): 447–467
https://doi.org/10.1016/S1872-2067(15)61038-5
38 C J HJacobsen, CMadsen, JHouzvicka, ISchmidt, ACarlsson. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
https://doi.org/10.1021/ja000744c
39 SMiar Alipour, RHalladj, SAskari, EBagheriSereshki. Low cost rapid route for hydrothermal synthesis of nano ZSM-5 with mixture of two, three and four structure directing agents. Journal of Porous Materials, 2016, 23(1): 145–155
https://doi.org/10.1007/s10934-015-0064-0
40 MThommes, K Kaneko, A VNeimark, J POlivier, FRodriguez-Reinoso, JRouquerol, K S WSing. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069
41 K ACychosz, R Guillet-Nicolas, J García-Martínez, MThommes. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46(2): 389–414
https://doi.org/10.1039/C6CS00391E
42 C HChristensen, KJohannsen, ETörnqvist, ISchmidt, HTopsøe, C HChristensen. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3–4): 117–122
https://doi.org/10.1016/j.cattod.2007.06.082
43 TMasuda. Diffusion mechanisms of zeolite catalysts. ChemInform, 2004, 35(6): 133–144
https://doi.org/10.1002/chin.200406247
44 TMasuda, Y Fujikata, TNishida, KHashimoto. The influence of acid sites on intracrystalline diffusivities within MFI-type zeolites. Microporous and Mesoporous Materials, 1998, 23(3): 157–167
https://doi.org/10.1016/S1387-1811(98)00058-4
45 F CMeunier, D Verboekend, J PGilson, J CGroen, JPérez-Ramírez. Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. Microporous and Mesoporous Materials, 2012, 148(1): 115–121
https://doi.org/10.1016/j.micromeso.2011.08.002
46 HZhao, J H Ma, Q Q Zhang, Z P Liu, R F Li. Adsorption and diffusion of n-heptane and toluene over mesoporous ZSM-5 zeolites. Industrial & Engineering Chemistry Research, 2014, 53(35): 13810–13819
https://doi.org/10.1021/ie502496v
47 V NShetti, J Kim, RSrivastava, MChoi, R Ryoo. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 2008, 254(2): 296–303
https://doi.org/10.1016/j.jcat.2008.01.006
48 RJavaid, K Urata, SFurukawa, TKomatsu. Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Applied Catalysis A: General, 2015, 491: 100–105
https://doi.org/10.1016/j.apcata.2014.12.002
49 JKim, M Choi, RRyoo. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269(1): 219–228
https://doi.org/10.1016/j.jcat.2009.11.009
[1] Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation[J]. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
[2] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[3] Shufeng Shan, Haiyan Liu, Gang Shi, Xiaojun Bao. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
[4] Pengxu YAO,Yaquan WANG,Teng ZHANG,Shuhai WANG,Xiaoxue WU. Effect of sodium ions in synthesis of titanium silicalite-1 on its catalytic performance for cyclohexanone ammoximation[J]. Front. Chem. Sci. Eng., 2014, 8(2): 149-155.
[5] LU Chunxi, LI Ruxin, SHI Mingxian, LIU Xiancheng. Gas-solids separation model of a novel FCC riser terminator device: super short quick separator (SSQS) [J]. Front. Chem. Sci. Eng., 2008, 2(4): 462-467.
[6] LI Jia, ZOU Jijun, ZHANG Xiangwen, GUO Wei, MI Zhentao. Catalytic cracking of endothermic fuels in coated tube reactor[J]. Front. Chem. Sci. Eng., 2008, 2(2): 181-185.
[7] YAN Pingxiang, MENG Xianghai, GAO Jinsen, XU Chunming, SUI Zhiyu. Study on reformulation of fluid catalytic cracking gasoline and increasing production of light olefins[J]. Front. Chem. Sci. Eng., 2008, 2(1): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed