Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2008, Vol. 2 Issue (4) : 468-474    https://doi.org/10.1007/s11783-008-0078-9
Effect of rhizosphere on soil microbial community and pyrene biodegradation
SU Yuhong1, YANG Xueyun2, CHIOU Cary3
1.Chemistry Department, Xinjiang University;College of Resources and Environment, Northwest A & F University;U.S. Geological Survey, Box 25046, MS 408, Denver Federal Center; 2.College of Resources and Environment, Northwest A & F University; 3.U.S. Geological Survey, Box 25046, MS 408, Denver Federal Center;
 Download: PDF(142 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.
Issue Date: 05 December 2008
 Cite this article:   
YANG Xueyun,SU Yuhong,CHIOU Cary. Effect of rhizosphere on soil microbial community and pyrene biodegradation[J]. Front.Environ.Sci.Eng., 2008, 2(4): 468-474.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0078-9
https://academic.hep.com.cn/fese/EN/Y2008/V2/I4/468
1 Newman L A, Strand S E, Choe N, Duffy J, Ekuan G . Uptake and biotransformation of trichloroethyleneby hybrid poplars. Environ. Sci. Technol., 1997, 31: 1062–1067.
doi:10.1021/es960564w
2 Pilon-Smits E . Phytoremediation. Annu. Rev. Plant Biol., 2005, 56: 15–39.
doi:10.1146/annurev.arplant.56.032604.144214
3 Jones K C, Stratford J A, Waterhouse K S, Vogt N B . Organic contaminantsin Welsh soils: Polynuclear aromatic hydrocarbons. Environ. Sci. Technol., 1989, 23: 540–550.
doi:10.1021/es00063a005
4 Dong R B, Xu D F, Liu L ., He Z J, Qi M F, Zeng H Q. The behavior of polycyclicaromatic hydrocarbons in the environment. Environ. Dev, 1999, 14(4): 10–11, 45 (in Chinese)
5 Wennrich L, Popp P, Zeibig M . Polycyclic aromatic hydrocarbon burden in fruit and vegetablespecies cultivated in allotments in an industrial area. Int. J. Environ. Anal. Chem., 2002, 82(10): 677–690.
doi:10.1080/0306731021000075401
6 Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel J L . Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbonsby vegetables grown on industrial contaminated soils. J. Environ. Qual., 2002, 31(5): 1649–1656
7 Hansen L D, Nestler C, Ringelberg D, Bajpai R . Extended bioremediationof PAH/PCP contaminated soils from the POPILE wood treatment facility. Chemosphere, 2004, 54 (10): 1481–1493.
doi:10.1016/j.chemosphere.2003.09.046
8 Brady C A L, Gill R A, Lynch P T . Preliminary evidence for the metabolism of benzo(a) pyreneby Plantago lanceolata. Environ. Geochem.Health, 2003, 25(1): 131–137.
doi:10.1023/A:1021240730266
9 Straube W L, Nestler C C, Hansen L D, Ringleberg D, Prichard P H, Jone-Meehan J . Remediation of polyaromatic hydrocarbons (PAHs) throughlandfarming with biostimulation and bioaugmentation. Acta Biotechnol., 2003, 23(2–3): 179–196.
doi:10.1002/abio.200390025
10 Wild E, Dent J, Tomas G O, Jones K C . Direct observationof organic contaminant uptake, storage, and metabolism with plantroots. Environ. Sci. Technol., 2005, 39: 3695–3702.
doi:10.1021/es048136a
11 Aprill W, Sims R C . Evaluation of the use ofprairie grasses for stimulating polycyclic aromatic hydrocarbon treatmentin soil. Chemosphere, 1990, 20: 253–265.
doi:10.1016/0045-6535(90)90100-8
12 Xu S Y, Chen Y X, Lin Q, Wu W X, Xue S G, Shen C F . Uptake and accumulation of phenanthrene and pyrene in spiked soilsby Ryegrass (Lolium perenne L.). J. Environ. Sci., 2005, 17 (5): 817–822
13 Oleszczuk P, Baran S . Polycyclic aromatic hydrocarbonscontent in shoots and leaves of willow (Salix viminalis) cultivatedon the sewage sludge-amended soil. Water,Air, Soil Pollut., 2005, 168 (1–4): 91–111.
doi:10.1007/s11270-005-0884-7
14 Parrish Z D, Banks M K, Schwab A P . Effect of root death and decay on dissipation of polycyclicaromatic hydrocarbons in the rhizosphere of yellow sweet clover andtall fescue. J. Environ. Qual., 2005, 34 (1): 207–216
15 Terry N, Zayed A, Pilon-Smits E, Hansen D . Can plantssolve the selenium problem? In: Proceedings/Abstractsof the Fourteenth Annual Symposium, Current Topics in Plant Biochemistry,Physiology, and Molecular Biology–Will Plants Have a Role inBioremediation? Columbia: Interdisciplinary PlantGroup, University of Missouri, 1995, 63–64
16 Burken J G, Schnoor J L . Uptake and Metabolism ofatrazine by poplar trees. Environ. Sci.Technol., 1997, 31: 1399–1406.
doi:10.1021/es960629v
17 Johnsen A R, Winding A, Karlson U, Roslev P . Linking ofmicroorganisms to phenanthrene metabolism in soil by analysis of C-13-labeledcell lipids. Appl. Environ. Microbiol., 2002, 68 (12): 6106–6113.
doi:10.1128/AEM.68.12.6106-6113.2002
18 McCutcheon S C, Schnoor J L . Overview of phytotransformationand control of wastes. In: McCutcheon S C, Schnoor J L, eds. Phytoremediation: Transformation and Controlof Contaminants. New York: Wiley, 2003, 3–58
19 Kirk J L, Klironomos J N, Lee H, Trevors J T . The effects of perennial ryegrass and alfalfa on microbial abundanceand diversity in petroleum contaminated soil. Environ. Pollut., 2005, 133: 455–465.
doi:10.1016/j.envpol.2004.06.002
20 Yang H, Su Y H, Zhu Y G . Influences of polycyclic aromatic hydrocarbons (PAHs)on soil microbial community composition with or without vegetation. J. Environ. Sci.Health, 2007, 42(1): 65–72
21 Su Y H, Zhu Y G . Uptake of selected PAHs fromcontaminated soils by rice seedlings (Oryzasativa) and influence of rhizosphere on PAH distribution. Environ. Pollut., 2008, 155(2): 359–365.
doi:10.1016/j.envpol.2007.11.008
22 Siciliano S D, Germida J J . Mechanisms of phytoremediation:Biochemical and ecological interactions between plants and bacteria. Environ. Rev., 1998, 6: 65–79.
doi:10.1139/er-6-1-65
23 Sciliano S D, Germida J J, Banks K, Greer C W . Changes inmicrobial community composition and function during a polyaromatichydrocarbon phytoremediation field trial. Appl. Environ. Microbiol., 2003, 69: 483–489.
doi:10.1128/AEM.69.1.483-489.2003
24 Macek T, Mackova M, Kas J . Research review paper: Exploitation of plants for theremoval of organics in environmental remediation. Biotechnol. Adv., 2000, 18: 23–34.
doi:10.1016/S0734-9750(99)00034-8
25 Harvey P J, Campanella B F, Castro P M L, Harms H, Lichtfouse E, Schaffner A R, Smercek S, Werk-Reichharts D . Phytoremediation of polyaromatic hydrocarbons,anilines and phenols. Environ. Sci. Pollut.Res., 2002, 9(1): 29–47.
doi:10.1007/BF02987315
26 Frostegård Å, Tunlid A, Bååth E . Microbial biomass measured as total lipidphosphate in soils of different organic content. J. Microbial.Methods, 1991, 14: 151–163.
doi:10.1016/0167-7012(91)90018-L
27 Zelles L, Bai Q Y, Beck T, Beese F . Signature fattyacids in phospholipids and lipopolysaccharides as indicators of microbialbiomass and community structure in agriculture soil. Soil Biol. Biochem., 1992, 24: 317–323.
doi:10.1016/0038-0717(92)90191-Y
28 Murata T, Takagi K, Yokoyama K . Relationship between soil bacteria community structurebased on composition of fatty acid methyl esters and the amount ofbacterial biomass in Japanese lowland rice fields. Soil Biol. Biochem., 2002, 34: 885–888.
doi:10.1016/S0038-0717(02)00013-5
29 Fang J S, Barcelona M J . Biogeochemical evidence formicrobial community change in a jet fuel hydrocarbons-contaminatedaquifer. Org. Geochem., 1998, 29 (4): 899–907.
doi:10.1016/S0146-6380(98)00174-0
30 O'Leary W M, Wilkinson S G . Gram-positive bacteria. In: Ratledge C, Wilkinson S G, eds. Microbial Lipids. London: AcademicPress, 1988, 117–202
31 Bardgett R D, Hobbs P J, Frostegård A . Changes in soil fungal: Bacterial biomassratios following reductions in the intensity of management of an uplandgrassland. Biol. Fertil. Soils, 1996, 22: 261–264.
doi:10.1007/BF00382522
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed