Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 340-348    https://doi.org/10.1007/s11783-010-0233-y
Research articles
Observation of bioturbation and hyporheic flux in streambeds
Jinxi SONG1,Xunhong CHEN2,Cheng CHENG3,
1.College of Urban and Environmental Sciences, Northwest University, Xi''an 710127, China;School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0996, USA; 2.School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0996, USA;School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China; 3.School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0996, USA;
 Download: PDF(711 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the Elkhorn River, burrows, tubes, and sediment mounds created by invertebrate bioturbation were observed in the exposed streambed and commonly concentrated on the fine-sediment patches, which consist of silt, clay, and organic matter. These invertebrate activities could loosen the thin layer of clogging sediments and result in an increase of pore size in the sediments, leading to greater vertical hydraulic conductivity of the streambed (Kv). The measurements of the vertical hydraulic gradient across the submerged streambed show that vertical flux in the hyporheic zone can alter directions (upward versus downward) for two locations only a few meters apart. In situ permeameter tests show that streambed Kv in the upper sediment layer is much higher than that in the lower sediment layer, and the calculated Kv in the submerged streambed is consistently greater than that in the clogged sediments around the shorelines of the sand bars. Moreover, a phenomenon of gas bubble release at the water-sediment interface from the subsurface sediments was observed in the groundwater seepage zone where flow velocity is extremely small. The bursting of gas bubbles can potentially break the thin clogging layer of sediments and enhance the vertical hydraulic conductivity of the streambed.
Keywords invertebrate bioturbation      clogging      hyporheic exchange      streambed      the Elkhorn River      
Issue Date: 05 September 2010
 Cite this article:   
Jinxi SONG,Cheng CHENG,Xunhong CHEN. Observation of bioturbation and hyporheic flux in streambeds[J]. Front.Environ.Sci.Eng., 2010, 4(3): 340-348.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0233-y
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/340
Findlay S. Importance of surface-subsurface exchange in stream ecosystem:the hyporheic zone. Limnology and Oceanography, 1995, 40(1): 159–164

doi: 10.4319/lo.1995.40.1.0159
Chen X H, Shu L. Stream-aquifer interactions: evaluation of depletion volume and residual effectsfrom ground water pumping. Ground Water, 2002, 40(3): 284–290

doi: 10.1111/j.1745-6584.2002.tb02656.x
Blaschke A P, Steiner K H, Schmalfuss R, Gutknecht D, Sengschmitt D. Clogging processes in hyporheic interstices of an impounded river, the Danubeat Vienna, Austria. International Reviewof Hydrobiology, 2003, 88(3―4): 397–413

doi: 10.1002/iroh.200390034
Packman A I, MacKay J S. Interplay of stream-subsurface exchange, clay particle deposition,and streambed evolution. Water Resources Research, 2003, 39(4): 1097–1099

doi: 10.1029/2002WR001432
Boulton A J, Findlay S, Marmonier P, Stanley E H, Valett H M. The functional significance of the hyporheic zone in streams andrivers. Annual Review of Ecology and Systematics, 1998, 29(1): 59–81

doi: 10.1146/annurev.ecolsys.29.1.59
Bencala K E. Hyporheic zone hydrological processes. Hydrological Processes, 2000, 14(15): 2797–2798

doi: 10.1002/1099-1085(20001030)14:15<2797::AID-HYP402>3.0.CO;2-6
Sophocleous M. Interactions between groundwater and surface water: thestate of the science. Hydrogeology Journal, 2002, 10(1): 52–67

doi: 10.1007/s10040-001-0170-8
Arntzen E V, Geist D R, Dresel P E. Effects of fluctuating river flow ongroundwater/surface water mixing in the hyporheic zone of a regulated,large cobble bed river. River Research and Applications, 2006, 22(8): 937–946

doi: 10.1002/rra.947
Schmidt S I, Hellweg J, Hahn H J, Hatton T J, Humphreys W F. Does groundwater influence the sediment fauna beneath a small, sandystream? Limnologica-Ecology and Managementof Inland Waters, 2007, 37(2): 208–225

doi: 10.1016/j.limno.2006.12.002
Nogaro G, Mermillod-Blondin F, Francois-Carcaillet F, Gaudet J P, Lafont M, Gibert J. Invertebrate bioturbationcan reduce the clogging of sediment: an experimental study using infiltrationsediment columns. Freshwater Biology, 2006, 51(8): 1458–1473

doi: 10.1111/j.1365-2427.2006.01577.x
Stanford J A, Ward J V. The hyporheic habitat of river ecosystem. Nature, 1988, 335(6185): 64–66

doi: 10.1038/335064a0
Valett H M, Fisher S G, Crimm N B, Camill P. Vertical hydrological exchange and ecological stabilityof a desert stream ecosystem. Ecology, 1994, 75(2): 548–560

doi: 10.2307/1939557
Varricchione J T, Thomas S A, Minshall G W. Vertical and seasonal distributionof hyporheic invertebrates in streams with different glacial histories. Aquatic Sciences, 2005, 67(4): 434–453
Song J X, Chen X H, Cheng C, Summerside S, Wen F J. Effects of hyporheic processeson streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophysical Research Letters, 2007, 34(7): L07409

doi: 10.1029/2007GL029254
Chen X H. Measurement of streambed hydraulic conductivity and itsanisotropy. Environmental Geology (Berlin), 2000, 39(12): 1317–1324

doi: 10.1007/s002540000172
Chen X H. Streambed hydraulic conductivity for rivers in south-centralNebraska. Journal of the American WaterResources Association, 2004, 40(3): 561–573

doi: 10.1111/j.1752-1688.2004.tb04443.x
Morrice J A, Valett H M, Dahm C N, Campana M E. Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrological Processes, 1997, 11(3): 253–267

doi: 10.1002/(SICI)1099-1085(19970315)11:3<253::AID-HYP439>3.0.CO;2-J
Hvorslev M J. Time lag and soil permeability in ground-water observations. U.S. Army Corps of Engineers. Waterways Experiment Station Bulletin, 1951, 36: 1–50
Freeze R A, Cherry J A. Groundwater. Prentice-Hall Inc, EnglewoodCliffs, New Jersey, 1979
Kaufmann T, Stansly P. Bionomics of Neobeterocerus pallidus Say (Coleoptera: Heteroceridae)in Oklahoma. Journal of the Kansas EntomologicalSociety, 1979, 52: 526–577
White R E. A field guide to the beetles of North America text andillustrations. The Peterson field guideseries, 29. Boston: Houghton Mifflin, 1983
Brennwald M S, Kipfer R, Imboden D M. Release of gas bubbles fromlake sediment traced by noble gas isotopes in the sediment pore water. Earth and Planetary Science Letters, 2005, 235(1―2): 31–34

doi: 10.1016/j.epsl.2005.03.004
Brunke M, Gonser T. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 1997, 37(1): 1–33

doi: 10.1046/j.1365-2427.1997.00143.x
Vázquez-Su?é E, Capino B, Abarca E, Carrera J. Estimation of recharge fromfloods in disconnected stream-aquifer systems. Ground Water, 2007, 45(5): 579–589

doi: 10.1111/j.1745-6584.2007.00326.x
Chen X H. Hydrologic connections of a stream-aquifer-vegetationzone in south-central Platte River Valley, Nebraska. Journal of Hydrology (Amsterdam), 2007, 333(2―4): 554–568

doi: 10.1016/j.jhydrol.2006.09.020
Mann C J, Wetzel R G. Hydrology of an impounded lotic wetland—wetland sediment characteristics. Wetlands, 2000, 20(1): 23–32

doi: 10.1672/0277-5212(2000)020[0023:HOAILW]2.0.CO;2
Mulholland P J, Marzolf E R, Webster J R, Hart D R, Hendricks S P. Evidence that hyporheic zones increase heterotrophic metabolism andphosphorus uptake in forest streams. Limnology and Oceanography, 1997, 42(3): 443–451

doi: 10.4319/lo.1997.42.3.0443
Hill A R, Labadia C F, Sanmugadas K. Hyporheic zone hydrologyand nitrogen dynamics in relation to the streambed topography of aN-rich stream. Biogeochemistry, 1998, 42(3): 285–310

doi: 10.1023/A:1005932528748
Durako M J, Medlyn R A, Moffler M D. Particulate matter resuspensionvia metabolically produced gas bubbles form benthic estuarine microalgaecommunities. Limnology and Oceanography, 1982, 27(4): 752–756

doi: 10.4319/lo.1982.27.4.0752
Marshall M C, Hall R O Jr. Hyporheic invertebrates affect N cycling and respiration in stream sedimentmicrocosms. Journal of the North AmericanBenthological Society, 2004, 23(3): 416–428

doi: 10.1899/0887-3593(2004)023<0416:HIANCA>2.0.CO;2
Veli?kovi? B. Colmation as one of the processesin interaction between the groundwater and surface water. Facta Universities, series. Architecture and CivilEngineering, 2005, 3(2): 165–172
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed