Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 320-330    https://doi.org/10.1007/s11783-011-0347-x
RESEARCH ARTICLE
Dilution sampling and analysis of particulate matter in biomass-derived syngas
Xiaoliang WANG1(), Curtis ROBBINS1, S. Kent HOEKMAN1, Judith C. CHOW1, John G. WATSON1, Dennis SCHUETZLE2
1. Division of Atmospheric Sciences, Desert Research Institute (DRI), Reno, NV 89512, USA; 2. Renewable Energy Institute, International (REII), McClellan, CA 95652, USA
 Download: PDF(793 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermochemical biomass gasification, followed by conversion of the produced syngas to fuels and electrical power, is a promising energy alternative. Real-world characterization of particulate matter (PM) and other contaminants in the syngas is important to minimize damage and ensure efficient operation of the engines it powers and the fuels created from it. A dilution sampling system is demonstrated to quantify PM in syngas generated from two gasification plants utilizing different biomass feedstocks: a BioMax?15 Biopower System that uses raw and torrefied woodchips as feedstocks, and an integrated biorefinery (IBR) that uses rice hulls and woodchips as feedstocks. PM2.5 mass concentrations in syngas from the IBR downstream of the purification system were 12.8–13.7 μg·m-3, which were significantly lower than the maximum level for catalyst protection (500 μg·m-3) and were 2–3 orders of magnitude lower than those in BioMax?15 syngas (2247–4835 μg·m-3). Ultrafine particle number concentration and PM2.5 chemical constituents were also much lower in the IBR syngas than in the BioMax?15. The dilution sampling system enabled reliable measurements over a wide range of concentrations: the use of high sensitivity instruments allowed measurement at very low concentrations (~1 μg·m-3), while the flexibility of dilution minimized sampling problems that are commonly encountered due to high levels of tars in raw syngas (~1 g·m-3).

Keywords dilution source sampling      syngas characterization      biomass gasification      ultrafine particles     
Corresponding Author(s): WANG Xiaoliang,Email:xiaoliang.wang@dri.edu   
Issue Date: 05 September 2011
 Cite this article:   
Xiaoliang WANG,Curtis ROBBINS,S. Kent HOEKMAN, et al. Dilution sampling and analysis of particulate matter in biomass-derived syngas[J]. Front Envir Sci Eng Chin, 2011, 5(3): 320-330.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0347-x
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/320
Fig.1  Syngas sampling setup for: (a) an under-pressure system (-2.5 kPa) of the BioMax15 gasification system, and (b) a pressurized system (70 kPa) in the PRFC IBR plant
Fig.2  Schematic of portable dilution sampling system used for syngas characterization
analytical method (filter media)parameterBioMax?15PRFC IBR
feedstockraw woodblended woodrice hulls (downstream polisher)woodchips (downstream polisher)woodchips (upstream polisher)
CO2 ratiosdilution ratio13.27.11.01.05.0
gravimetry (Teflon-membrane filters)PM2.5 mass concentration4835224713.7212.80117.25
thermal/optical (quartz-fiber filters)organic carbon (OC)3949115119.8523.37357.28
elemental carbon (EC)1220<48.480.131.6964.72
total carbon (TC)5169115119.9825.06421.99
ion chromatography (quartz-fiber filters)chloride (Cl-)<90.38<41.80<0.56<0.510.59
nitrate (NO3-)8.917.750.940.595.21
sulfate (SO42-)17.063.060.430.384.77
ammonium (NH4+)14.797.451.000.9712.86
sodium (Na+)<44.71<22.510.58<0.03<0.38
potassium (K+)3.12<22.730.720.135.74
X-ray fluorescence (Teflon-membrane filters)sodium (Na)116.603.651.562.1024.68
magnesium (Mg)47.6116.060.100.36<2.09
aluminum (Al)6.861.680.940.197.25
silicon (Si)3.49<3.990.130.020.17
sulfur (S)<2.15<1.08<0.09<0.061.23
chlorine (Cl)15.860.110.400.081.13
potassium (K)16.13<1.510.470.050.03
calcium (Ca)22.120.790.040.06<2.50
scandium (Sc)<39.869.640.450.270.43
titanium (Ti)5.362.32<0.050.06<0.64
iron (Fe)11.680.480.010.090.09
zinc (Zn)<2.15<1.080.010.086.68
bromine (Br)0.65<1.08<0.040.03<0.52
lead (Pb)6.281.43<0.060.010.09
sum of other elements22.4716.121.311.9423.43
Tab.1  Comparison of PM mass and chemical constituent concentrations (in μg·m) under different dilution ratios for syngas from BioMax15 and PRFC IBR. Cells with “<” indicate the species were below the instrument detection limit. Concentrations were normalized to standard temperature (0°C) and pressure (101.3 kPa) conditions
instrumentparameterBioMax?15PRFC IBR
feedstockraw woodblended woodrice hulls post-polisherwoodchips post-polisherwoodchips pre-polisher
CO2 analyzer a)CO2/ppm5.40E+ 042.26E+ 042.43E+ 052.26E+ 052.22E+ 05
emission analyzer b)NO/ppm128.932.3NAh)NA h)NA h)
NO2/ppm49.80.4NA h)NA h)NA h)
NOx/ppm178.732.7NA h)NA h)NA h)
O2/ppm2.61.3NA h)NA h)NA h)
PID analyzer c)VOC/ppm1689803NA h)NA h)NA h)
aethalometer d)BC/(mg·m-3)1.50.18NA h)NA h)NA h)
CPC e)number-CPC (0.01-2.5 μm, cm-3)2.66E+ 068.21E+ 049.21E+ 036.79E+ 035.63E+ 05
OPC f)number-OPC (0.3-25 μm, cm-3)1.03E+ 051.41E+ 04NA h)NA h)NA h)
DustTrak g)PM2.5-DustTrak/ (mg·m-3)59.215.40.110.020.81
OPCPM2.5-OPC/ (mg·m-3)2.44.2NA h)NA h)NA h)
teflon filter-gravimetryPM2.5-Gravimetry/ (mg·m-3)4.842.250.010.010.12
OPC+ CPCCMD/μm&lt;0.30.51NA h)NA h)NA h)
OPC+ CPCMMD/μm&lt;0.31.1NA h)NA h)NA h)
Tab.2  Summary of real-time gas and particle concentrations, gravimetric PM mass concentration, particle count median diameter (CMD) and mass median diameter (MMD). Concentrations were normalized to standard temperature (0°C) and pressure (101.3 kPa) conditions
Fig.3  Time series of (i) CO concentration by CO analyzer; (ii) NO, (iii) NO, and (iv) O by emission analyzer; (v) total VOCs by PID analyzer; (vi) black carbon by micro-aethalometer, (vii) particle number concentration by CPC and OPC, and (viii) PM mass concentration measured by DustTrak and OPC in syngas generated from BioMax15 when the feedstocks were (a) raw wood (left panels) and (b) blended 50% raw and 50% torrefied wood (right panels)
Fig.4  Particle size distribution measured by the optical particle counter (OPC) over the course of syngas sampling from gasification of (a) raw wood and (b) blended wood in the BioMax15
Fig.5  Relationship between (a) OPC vs. CPC for particle number concentration; (b) DustTrak vs. OPC for PM; (c) DustTrak PM vs. CPC number concentration; (d) BC vs. DustTrak PM; (e) CO vs. CPC number concentration; and (f) CO vs. DustTrak PM for the BioMax15 run with raw wood feedstock
Fig.6  Comparison of particle number concentrations measured by the CPC from different environments: (a) exhaust from an off-road heavy-duty diesel truck; (b) syngas from BioMax15 with raw wood feedstock; (c) syngas from the PRFC IBR with woodchip feedstock upstream of the syngas polisher; (d) syngas from BioMax15 with blended wood feedstock; (e) an air-conditioned office; and (f) syngas from the PRFC IBR with woodchip feedstock downstream of the syngas polisher
1 Demirbas A. Progress and recent trends in biofuels. Progress in Energy and Combustion Science , 2007, 33(1): 1-18
doi: 10.1016/j.pecs.2006.06.001
2 US DOE.Roadmap for Agriculture Biomass Feedstock Supply in the United States. DOE/NE-ID-11129. Washington D C: US Department of Energy, 2003
3 Shen L, Liu L T, Yao Z J, Liu G, Lucas M. Development potentials and policy options of biomass in China. Environmental Management , 2010, 46(4): 539-554
doi: 10.1007/s00267-010-9476-4 pmid:20372892
4 Liu H, Jiang G M, Zhuang H Y, Wang K J. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renewable &amp; Sustainable Energy Reviews , 2008, 12(5): 1402-1418
doi: 10.1016/j.rser.2007.01.011
5 Sang T, Zhu W X. China’s bioenergy potential. GCB Bioenergy , 2011, 3(2): 79-90
doi: 10.1111/j.1757-1707.2010.01064.x
6 Edwards R D, Smith K R, Zhang J, Ma Y. Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China. Chemosphere , 2003, 50(2): 201-215
doi: 10.1016/S0045-6535(02)00478-2 pmid:12653292
7 Wang X H, Feng Z M. Biofuel use and its emission of noxious gases in rural China. Renewable &amp; Sustainable Energy Reviews , 2004, 8(2): 183-192
doi: 10.1016/j.rser.2003.09.002
8 Shi Y C, Li S H, Liu X J. China's bioenergy industry development roadmap. Engineering Sciences ( Journal of the Chinese Academy of Engineering) , 2009, 7(2): 57-63
9 US DOE. Roadmap for Bioenergy and Biobased Products in the United States. Biomass Research and Development Initiative, US Department of Energy and US Department of Agriculture, Washington D C, 2007
10 Tijmensen M J A, Faaij A P C, Hamelinck C N, van Hardeveld M R M. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy , 2002, 23(2): 129-152
doi: 10.1016/S0961-9534(02)00037-5
11 CEN. Biomass Gasification. Tar and Particles in Product Gases- Sampling and Analysis. CEN/TS 15439:2006: E. Brussels, Belgium: European Committee for Standardization, 2006
12 Li C S, Suzuki K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview. Renewable &amp; Sustainable Energy Reviews , 2009, 13(3): 594-604
doi: 10.1016/j.rser.2008.01.009
13 Boerrigter H, den Uil H, Calis H P. Green diesel from biomass via Fischer-Tropsch synthesis: new insights in gas cleaning and process design. In: Bridgwater A V, . Pyrolysis and Gasification of Biomass and Waste. Newbury (UK): CPL Press, 2003, 385-394
14 Milne T A, Abatzoglou N, Evans R J. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion.NREL/TP-570-25357. Golden, CO: National Renewable Energy Laboratory, US Department of Energy, 1998
15 Dry M E. The Fischer-Tropsch process: 1950-2000. Catalysis Today , 2002, 71(3-4): 227-241
doi: 10.1016/S0920-5861(01)00453-9
16 Yung M M, Jablonski W S, Magrini-Bair K A. Review of catalytic conditioning of biomass-derived syngas. Energy &amp; Fuels , 2009, 23(4): 1874-1887
doi: 10.1021/ef800830n
17 US EPA.Method 5-Determination of Particulate Matter Emissions from Stationary Sources (40 CFR 60. Appendix A to Part 60). Washington D C: US Environmental Protection Agency, 1991
18 Corio L A, Sherwell J. In-stack condensible particulate matter measurements and issues. Journal of the Air &amp; Waste Management Association , 2000, 50(2): 207-218
pmid:10680350
19 ASTM. WK752 Test Method for Determination of PM2.5 Mass and Species Emissions from Stationary Combustion Sources by Dilution Sampling. Conshohocken PA: American Society for Testing Materials International , 2008
20 England G C, Watson J G, Chow J C, Zielinska B, Chang M C O, Loos K R, Hidy G M. Dilution-based emissions sampling from stationary sources: Part 1—Compact sampler methodology and performance. Journal of the Air &amp; Waste Management Association , 2007, 57(1): 65-78
pmid:17269232
21 England G C, Watson J G, Chow J C, Zielinska B, Chang M C O, Loos K R, Hidy G M. Dilution-based emissions sampling from stationary sources: Part 2—Gas-fired combustors compared with other fuel-fired systems. Journal of the Air &amp; Waste Management Association , 2007, 57(1): 79-93
pmid:17269233
22 Wall S M. Comparison of a new automated dilution sampler with the conventional EPA source test method for measuring PAH in diesel combustion aerosol. Journal of Aerosol Science , 1998, 29(1): S957-S958
doi: 10.1016/S0021-8502(98)90661-9
23 Wong C P, Chan T L, Leung C W. Characterisation of diesel exhaust particle number and size distributions using mini-dilution tunnel and ejector-diluter measurement techniques. Atmospheric Environment , 2003, 37(31): 4435-4446
doi: 10.1016/S1352-2310(03)00571-5
24 Yi H H, Hao J M, Duan L, Li X H, Guo X M. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China. Journal of the Air &amp; Waste Management Association , 2006, 56(9): 1243-1251
pmid:17004679
25 Zielinska B, Sagebiel J C, McDonald J D, Whitney K, Lawson D R. Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. Journal of the Air &amp; Waste Management Association , 2004, 54(9): 1138-1150
pmid:15468666
26 Zielinska B, Sagebiel J C, Arnott W P, Rogers C F, Kelly K E, Wagner D A, Lighty J S, Sarofim A F, Palmer G. Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science &amp; Technology , 2004, 38(9): 2557-2567
doi: 10.1021/es030518d pmid:15180051
27 Diebold J P, Browne K, Duncan D, Fields M, Smith T, Walker M, Walt R. The BioMax 15: the automation, integration and pre-commercial testing of an advanced down-draft gasifier and engine/gen set. In: Bridgwater AV, Boocock DGB,Thermal and Chemical Conversion of Biomass. Newbury (UK): CPL Press , 2004, 894-907
28 Chow J C, Wang X L, Kohl S D, Gronstal S, Watson J G. Heavy-duty diesel emissions in the Athabasca Oil Sands Region. In: Tropp RJ, Legge AH, . In: Proceedings 103rd Annual Meeting of the Air &amp; Waste Management Association. Pittsburgh, PA: Air &amp; Waste Management Association, 2010, 1-5
29 Chow J C, Watson J G. Aerosol chemical analysis on filters. In: Ruzer L, Harley NH,.Aerosols Handbook: Measurement, Dosimetry, and Health Effects. New York: CRC Press/Taylor &amp; Francis, 2011
30 Watson J G, Chow J C, Frazier C A. X-ray fluorescence analysis of ambient air samples. In: Landsberger S, Creatchman M, editors. Elemental Analysis of Airborne Particles, Vol. 1. Amsterdam: Gordon and Breach Science, 1999, 67-96
31 Chow J C, Watson J G. Ion chromatography in elemental analysis of airborne particles. In: Landsberger S, Creatchman M,. Elemental Analysis of Airborne Particles, Vol. 1. Amsterdam: Gordon and Breach Science, 1999, 97-137
32 Chow J C, Watson J G, Pritchett L C, Pierson W R, Frazier C A, Purcell R G. The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment , 1993, 27A(8): 1185-1201
33 Chow J C, Watson J G, Chen L W A, Chang M C O, Robinson N F, Trimble D, Kohl S D.. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Journal of the Air &amp; Waste Management Association , 2007, 57(9): 1014-1023
doi: 10.3155/1047-3289.57.9.1014 pmid:17912920
34 Wang X L, Chancellor G, Evenstad J, Farnsworth J E, Hase A, Olson G M, Sreenath A, Agarwal J K. A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Science and Technology , 2009, 43(9): 939-950
doi: 10.1080/02786820903045141
35 Dry M E. Fischer-Tropsch Technology. In: Steynberg A P, Dry M E,. Studies in Surface Science and Catalysis. Amsterdam (the Netherlands): Elsevier B V, 2004, 1-700
36 Chow J C, Watson J G, Chen L W A, Rice J, Frank N H. Quantification of PM2.5 organic carbon sampling artifacts in US networks. Atmospheric Chemistry and Physics , 2010, 10(12): 5223-5239
doi: 10.5194/acp-10-5223-2010
37 Watson J G, Chow J C, Chen L W A, Frank N H. Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks. Journal of the Air &amp; Waste Management Association , 2009, 59(8): 898-911
doi: 10.3155/1047-3289.59.8.898 pmid:19728484
38 Watson J G. Visibility: science and regulation. Journal of the Air &amp; Waste Management Association , 2002, 52(6): 628-713
pmid:12074426
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed