Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 421-427    https://doi.org/10.1007/s11783-011-0380-9
RESEARCH ARTICLE
Characteristics of night soil and leaf co-composting using aerobic static method
Xiaojie SUN1,2, Dunqiu WANG1, Wenjing LU2, Hongtao WANG2()
1. Guangxi Key Laboratory of Environmental Engineering and Protecting Assessment, Guilin University of Technology, Guilin 541004, China; 2. School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(239 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main purpose of this work is to investigate the characteristics of night soil and leaf co-composting using aerobic static composting method. Three influencing factors, including proportion of night soil and leaf, aeration rate and aeration pattern, were investigated through the evolution of the principal physicochemical properties, i.e., temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio and Germination index (GI). It was found that the 3∶1 (w∶w) mixture of night soil and leaf was capable of achieving the highest composting temperature, longest retention time of high temperature (55°C), and fastest organic matter degradation. The 0.14 m3·min-1·m-3 aeration rate was most beneficial to composting, and the mixture of night soil and leaf maintained the highest temperature for the longest duration and achieved the highest CO2 content and GI. The continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process.

Keywords night soil      leaf      aerobic compost      aeration rate      aeration pattern     
Corresponding Author(s): WANG Hongtao,Email:htwang@tsinghua.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Xiaojie SUN,Dunqiu WANG,Wenjing LU, et al. Characteristics of night soil and leaf co-composting using aerobic static method[J]. Front Envir Sci Eng, 2012, 6(3): 421-427.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0380-9
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/421
parameternight soilleaf
moisture content/%80±1.57.9±0.4
organic carbon/%46.56±0.2039.03±0.38
total nitrogen/%4.80±0.021.30±0.01
C/N9.7±0.0730.1±0.13
TP/%0.61±0.030.52±0.02
K/%0.29±0.011.30±0.02
GI/%1.6±0.5 60.1±3.2
Tab.1  Main initial characteristics of composted materials
experimentnight soil: leaves/(w: w)aeration patternaeration rate/(m3·min-1·m-3)
experiment I4∶1continuous0.1
4∶1intermittenta)0.1
experiment II4∶1intermittent0.14
3∶1intermittent0.14
2∶1intermittent0.14
experiment III3∶1intermittent0.08
3∶1intermittent0.14
3∶1intermittent0.2
Tab.2  Designs of the composting experiments
Fig.1  Effects of aeration pattern on composting process in terms of temperature
Fig.2  Effects of aeration pattern on composting process in terms of CO
Fig.3  Effects of aeration pattern on composting process in terms of O
Fig.4  Effect of the proportion of night soil and leaf on composting temperatures
parametertime /dnight soil:leaf 4∶1/(ww)night soil:leaf 3∶1/(ww)night soil:leaf 2∶1/(ww)
C/%042.57±0.3442.04±0.4741.30±0.08
3032.70±0.2831.09±0.1134.81±0.26
N/%02.95±0.062.70±0.032.38±0.07
303.24±0.012.85±0.022.80±0.13
H/%06.24±0.256.07±0.165.85±0.34
304.99±0.484.35±0.074.12±0.44
P/%00.73±0.0140.68±0.0310.50±0.014
300.50±0.0250.64±0.0280.73±0.022
K/%00.97±0.0210.88±0.0460.83±0.012
301.10±0.0371.21±0.0541.11±0.018
C/N014.43±0.9915.57±1.2217.35±1.14
3010.09±1.6210.90±0.7112.43±0.56
GI/%019.2±6.3232.0±5.4747.3±8.23
3050.3±6.4862.7±9.5668.2±7.93
Tab.3  The changes of chemical and maturity parameters during the composting
Fig.5  Effect of aeration rates on composting temperatures
Fig.6  Effect of aeration rates on carbon dioxide
metal/(mg·kg-1)time /daeration rate/(m3·min-1·m-3)
0.080.140.2
As040.058.441.6
3043.262.457.6
Cd01.61.51.6
302.02.02.0
Cr027.228.029.6
3037.237.239.4
Cu041.646.028
3058.870.853.2
Ni018.420.018.8
3023.624.825.6
Pb0NdNdNd
301.64.09.2
Zn0200.0222188
30392.4408384
Tab.4  The changes of heave metals during the composting
1 Lu Y, Wu X, Guo J. Characteristics of municipal solid waste and sewage sludge co-composting. Waste Management (New York) , 2009, 29(3): 1152–1157
doi: 10.1016/j.wasman.2008.06.030 pmid:18783931
2 Tremier A, de Guardia A, Massiani C, Paul E, Martel J L. A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted. Bioresource Technology , 2005, 96(2): 169–180
doi: 10.1016/j.biortech.2004.05.005 pmid:15381213
3 Banegas V, Moreno J L, Moreno J I, García C, León G, Hernández T. Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Management (New York) , 2007, 27(10): 1317–1327
doi: 10.1016/j.wasman.2006.09.008 pmid:17118642
4 de Guardia A, Petiot C, Rogeau D, Druilhe C. Influence of aeration rate on nitrogen dynamics during composting. Waste Management (New York) , 2008, 28(3): 575–587
doi: 10.1016/j.wasman.2007.02.007 pmid:17826974
5 Wong J W C, Mak K F, Chan N W, Lam A, Fang M, Zhou L X, Wu Q T, Liao X D. Co-composting of soybean residues and leaves in Hong Kong. Bioresource Technology , 2001, 76(2): 99–106
doi: 10.1016/S0960-8524(00)00103-6 pmid:11131806
6 Ekinci K, Keener H M, Akbolat D. Effects of feedstock, airflow rate, and recirculation ratio on performance of composting systems with air recirculation. Bioresource Technology , 2006, 97(7): 922–932
doi: 10.1016/j.biortech.2005.04.025 pmid:15963715
7 Liang Y, Leonard J J, Feddes J J R, McGill W B. Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresource Technology , 2006, 97(5): 748–761
doi: 10.1016/j.biortech.2005.03.041 pmid:16112570
8 Meunchang S, Panichsakpatana S, Weaver R W. Co-composting of filter cake and bagasse; by-products from a sugar mill. Bioresource Technology , 2005, 96(4): 437–442
doi: 10.1016/j.biortech.2004.05.024 pmid:15491824
9 Li X J, Zhang R H, Pang Y Z. Characteristics of dairy manure composting with rice straw. Bioresource Technology , 2008, 99(2): 359–367
doi: 10.1016/j.biortech.2006.12.009 pmid:17320381
10 Zubillaga M S, Lavado R S. Stability indexes of sewage sludge compost obtained with different proportions of a bulking agent. Communications in Soil Science and Plant Analysis , 2003, 34(3-4): 581–591
doi: 10.1081/CSS-120017841
11 Eftoda G, Mc Cartney D. Determining the critical bulking agent requirement for municipal biosolids composting. Compost Science & Utilization , 2004, 12(3): 208–218
12 Rasapoor M, Nasrabadi T, Kamali M, Hoveidi H. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management (New York) , 2009, 29(2): 570–573
doi: 10.1016/j.wasman.2008.04.012 pmid:18619830
13 Themelis N J, Kim Y H. Material and energy balances in a large-scale aerobic bioconversion cell. Waste Management Research , 2002, 20(3): 234–242
doi: 10.1177/0734242X0202000304 pmid:12152891
14 Ekinci K, Keener H M, Elwell D L, Michel F C. Effects of aeration strategies on the composting process: Part I, Experimental studies. Transactions of the ASAE , 2004, 47(5): 1697–1708
15 Hong J H, Keener H M, Elwell D L. Preliminary study of the effect of continuous and intermittent aeration on composting hog manure amended with sawdust. Compost Science & Utilization , 1998, 6(3): 74–88
16 Elwell D L, Borger D C, Blaho D V, Fahrni J K, Keener H M, Willett L B. Changes in concentrations of malodorous compounds during controlled aeration composting. Compost Science & Utilization , 2004, 12(2): 102–107
17 Ko H J, Kim K Y, Kim H T, Kim C N, Umeda M. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management (New York) , 2008, 28(5): 813–820
doi: 10.1016/j.wasman.2007.05.010 pmid:17629693
18 de Bertoldi M, Ferranti M P, L’Hermite P, Zucconi F. Compost: Production, Quality and Use, Elsevier Applied Science. London: Elsevier, 1986, 852
19 Bertran E, Sort X, Soliva M, Trillas I. Composting winery waste: Sludges and grape stalks. Bioresource Technology , 2004, 95(2): 203–208
doi: 10.1016/j.biortech.2003.07.012 pmid:15246445
20 Tiquia S M, Tam N F Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology , 1998, 65(1–2): 43–49
doi: 10.1016/S0960-8524(98)00024-8
21 Imbeah M. Composting piggery waste: a review. Bioresource Technology , 1998, 63(3): 197–203
doi: 10.1016/S0960-8524(97)00165-X
22 Stentiford E I. Composting control: Principles and practice. In: de Bertoldi M, Sequi P, Lemmes B, Papi T, eds. The Science of Composting, Part 1 . Glasgow: Blackie, 1996, 56–59
23 USEPA. Control of pathogens in municipal wastewater sludge for land application. In: Center for Environmental Research Information. Environmental Regulations and Technology EPA/625/10–89/006. Cincinnati, OH 45268 , 1989, 71
24 Golueke C G, Diaz L F. Historical review: Composting and its role in municipal waste management. In: de Bertoldi M, Sequi P, Lemmes B, Papi T, eds. The Science of Composting, Part 1 . Glasgow: Blackie, 1996, 3–14
25 Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management: Engineering Principles and Management Issues. New York: McGraw-Hill Science Engineering, 1993, 686–687
26 Choi W, Chang S. Nitrogen dynamics in co-composted drilling wastes: Effects of compost quality and 15N fertilization. Soil Biology & Biochemistry , 2005, 37(12): 2297–2305
doi: 10.1016/j.soilbio.2005.04.007
27 Morel J L, Colin F, Germon J C, Godin P, Juste C. Methods for the evaluation of the maturity of municipal refuse compost. In: Gasser J K R, ed. Composting of Agricultural and Other Wastes. London: Elsevier, 1985, 56–72
doi: 10.1016/j.soilbio.2005.04.007
28 Ministry of Urban and Rural Construction and Environmental Protection. Control Standards for Pollutants in Sludge from Agricultural Use, GB4284–84. Beijing , 1984 (in Chinese)
29 State Bureau of Environmental Protection. Control Standards for Urban Wastes for Agricultural Use, GB8172–87. Beijing , 1987 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed