Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 867-874    https://doi.org/10.1007/s11783-013-0541-0
RESEARCH ARTICLE
End-of-pipe or process-integrated: evidence from LMDI decomposition of China’s SO2 emission density reduction
Pingdan ZHANG()
School of Economics & Business Administration, Beijing Normal University, Beijing 100875, China
 Download: PDF(119 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, reduction in sulfur dioxide (SO2) emission is decomposed into three parts: source prevention, process control and end-of-pipe treatment, using the Logarithmic Mean Divisia Index method (LMDI). Source prevention and process control are defined as process-integrated treatment. It is found that from 2001 to 2010 the reduction of SO2 emission density in China was mainly contributed by end-of-pipe treatment. From the 10th Five Year Plan (FYP) period (2001–2005) to the 11th FYP period (2006–2010), the Chinese government has attempted to enhance process-integrated treatment. However, given its initial effort, the effect is limited compared with that of the end-of-pipe treatment. The effectiveness of environmental regulation and technology in the reduction of SO2 density in 30 provinces (municipality/autonomous regions) from 2001 to 2010 is also investigated. This implies that environmental regulation and technology promote process control and end-of-pipe treatment significantly, but does not influence source prevention. Furthermore, environmental technology will only take effect under the circumstances of stringent environmental regulation. Therefore, to fulfill the whole process treatment, environmental regulation should be strengthened and environmental technology upgraded at the same time.

Keywords end-of-pipe      process-integrated      Logarithmic Mean Divisia Index method (LMDI)      environmental regulation      environmental technology     
Corresponding Author(s): ZHANG Pingdan,Email:pingdanzhang@bnu.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Pingdan ZHANG. End-of-pipe or process-integrated: evidence from LMDI decomposition of China’s SO2 emission density reduction[J]. Front Envir Sci Eng, 0, (): 867-874.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0541-0
https://academic.hep.com.cn/fese/EN/Y0/V/I/867
periodwhole pollution treatment(D)source prevention(Dstructure)process control(Ddensity)end-of-pipe treatment(Dtreatment)
2001-2002-0.00120.0065(-568.09%)-0.0003(27.70%)-0.0074(640.39%)
2002-2003-0.00040.0002(-40.24%)-0.0002(61.01%)-0.0003(79.22%)
2003-2004-0.0017-0.0000(2.14%)-0.0006(35.27%)-0.0011(62.60%)
2004-20050.0001-0.0008(610.55%)-0.0003(207.98%)0.0012(-918.53%)
2005-2006-0.00100.0000(-3.43%)-0.0004(36.22%)-0.0007(67.20%)
2006-2007-0.0021-0.0001(5.81%)-0.0010(47.89%)-0.0010(46.31%)
2007-2008-0.0018-0.0000(1.21%)-0.0011(60.09%)-0.0007(38.70%)
2008-2009-0.00040.0000(-0.19%)0.0003(-72.56%)-0.0007(172.74%)
2009-20100.0021-0.0002(9.31%)0.0024(-113.52%)-0.0001(4.22%)
2001-2010-0.00620.0040(-64.69%)-0.0001(1.70%)-0.0101(162.99%)
10th FYP period 2001-2005-0.00310.0053(-171.63%)-0.0014(47.16%)-0.0069(224.47%)
11th FYP period 2006-2010-0.0022-0.0004(19.02%)0.0012(-57.72%)-0.0030(138.69%)
Tab.1  SO emission density decomposition in China from 2001 to 2010
regions10th FYP period11th FYP period
source preventionprocess controlend-of-pipe treatmentsource preventionprocess controlend-of-pipe Treatment
Beijing-0.0003(13.66%)-0.0009(46.23%)-0.0008(40.11%)-0.0002(27.56%)↑-0.0003(37.02%)↓-0.0002(35.42%)↑
Tianjin0.0002(-4.89%)-0.0026(67.53%)-0.0014(37.36%)-0.0007(21.76%)↑-0.0010(33.92%)↓-0.0013(44.32%)↑
Hebei-0.0025(34.89%)0.0006(-8.39%)-0.0053(73.49%)0.0005(-9.23%)↓-0.0020(36.78%)↑-0.0039(72.45%)↓
Shanxi0.0040(-25.68%)-0.0103(65.74%)-0.0094(59.94%)-0.0031(27.82%)↑-0.0055(49.76%)↓-0.0025(22.42%)↓
Inner Mongolia0.0019(-39.19%)0.0013(25.19%)0.0057(114.00%)0.0016(-9.44%)↑-0.0077(46.40%)↑-0.0104(63.04%)↓
Liaoning0.0005(-719.06%)-0.0017(2399.26%)0.0011(-1580.21%)-0.0006(11.11%)↑-0.0026(49.82%)↓-0.0020(39.07%)↑
Jilin-0.0001(29.94%)-0.0009(184.38%)0.0006(-114.32%)-0.0001(3.32%)↓-0.0022(59.19%)↓-0.0014(37.49%)↑
Heilongjiang-0.0011(78.85%)-0.0014(-105.16%)0.0017(126.31%)0.0001(-5.50%)↓-0.0009(38.70%)↑-0.0015(66.80%)↓
Shanghai-0.0010(62.40%)-0.0010(60.72%)0.0004(-23.12%)-0.0003(13.93%)↓-0.0006(27.78%)↓-0.0012(58.29%)↑
Jiangsu-0.0001(3.41%)-0.0002(3.67%)-0.0040(92.93%)-0.0004(15.58%)↑-0.0010(34.35%)↑-0.0014(50.06%)↓
Zhejiang-0.0004(19.14%)-0.0004(21.05%)-0.0011(59.81%)0.0000(-0.89%)↓-0.0009(37.06%)↑-0.0014(62.05%)↑
Anhui0.0003(-24.75%)-0.0027(229.50%)0.0012(-104.75%)0.0009(-24.21%)↑-0.0017(47.90%)↓-0.0027(76.31%)↑
Fujian0.0007(32.52%)0.0010(49.48%)0.0004(18.00%)0.0000(-1.85%)↓-0.0009(35.76%)↓-0.0017(66.09%)↑
Jiangxi-0.0015(-81.95%)-0.0002(-9.44%)0.0034(191.39%)-0.0006(10.39%)↑-0.0025(42.36%)↑-0.0027(47.24%)↓
Shandong-0.0005(8.27%)0.0020(-32.50%)-0.0075(124.23%)-0.0002(5.04%)↓-0.0012(33.51%)↑-0.0022(61.45%)↓
Henan0.0015(-955.50%)-0.0010(656.96%)-0.0003(198.53%)-0.0004(6.67%)↓-0.0021(37.40%)↑-0.0032(55.93%)↑
Hubei-0.0015(52.15%)-0.0003(12.11%)-0.0010(35.73%)-0.0006(13.17%)↓-0.0018(39.60%)↑-0.0022(47.23%)↑
Hunan0.0010(-28.12%)0.0020(-53.33%)-0.0067(181.45%)-0.0012(23.84%)↑-0.0018(34.59%)↑-0.0021(41.56%)↓
Guangdong-0.0004(21.55%)-0.0004(20.11%)-0.0012(58.34%)-0.0001(2.71%)↓-0.0007(30.56%)↑-0.0015(66.73%)↑
Guangxi-0.0460(894.18%)0.0443(-860.94%)-0.0034(66.76%)-0.0004(4.90%)↓-0.0033(37.74%)↑-0.0050(57.36%)↓
Hainan0.0003(-34.00%)-0.0003(28.61%)-0.0009(105.39%)
Chongqing0.0005(-4.79%)-0.0032(27.82%)-0.0088(76.97%)
Sichuan-0.0077(119.76%)0.0073(-112.28%)-0.0060(92.52%)0.0008(-13.50%)↓-0.0022(34.69%)↑-0.0050(78.81%)↓
Guizhou-0.0021(12.48%)0.0022(-12.86%)-0.0172(100.38%)0.0006(-2.10%)↓-0.0132(44.54%)↑-0.0171(57.57%)↓
Yunnan0.0020(-140.74%)0.0017(-119.75%)-0.0051(360.49%)-0.0002(3.53%)↑-0.0021(46.51%)↑-0.0023(49.96%)↓
Tibet————
Shaanxi0.0008(-15.65%)0.0005(-9.82%)-0.0065(125.47%)-0.0004(4.46%)↑-0.0041(42.83%)↑-0.0051(52.71%)↓
Gansu-0.0318(2462.94%)0.0275(-2132.23%)0.0030(-230.72%)-0.0003(3.96%)↓-0.0040(46.67%)↑-0.0042(49.36%)↑
Qinghai0.0023(-32.09%)-0.0047(66.16%)-0.0047(65.93%)
Ningxia0.0041(-14.30%)-0.0149(52.00%)-0.0179(62.30%)
Xinjiang-0.0014(-204.52%)-0.0013(-192.47%)0.0035(496.99%)0.0039(-189.11%)↑-0.0016(77.45%)↑-0.0043(211.65%)↓
Tab.2  SO emission density decomposition in 30 provinces (municipality/autonomous regions) from 2001 to 2010
contribution of process-integrated treatment similar to that of end-of-pipe treatment (16 provinces)contribution of process-integrated treatment smaller than that of end-of-pipe treatment (10 provinces)
better effect of process control (17 provinces)13 provinces (Hebei, Inner Mongolia, Heilongjiang, Jiangsu, Jiangxi, Shandong, Hunan, Guangxi, Sichuan, Guizhou, Yunnan, Shaanxi, Xinjiang)4 provinces (Zhejiang, Hubei, Guangdong, Gansu)
effect of process control as usual (9 provinces)3 provinces (Beijing, Shanxi, Henan)6 provinces (Tianjin, Liaoning, Jilin, Shanghai, Anhui, Fujian)
Tab.3  Choice of approaches to SO whole process treatment from 2001 to 2010
variablesamplemeanStd. Dev.minimummaximum
D259-0.0010.003-0.0140.019
Dstructure259-0.0000.004-0.0500.021
Ddensity265-0.0000.004-0.0230.046
Dtreatment259-0.0010.003-0.0130.021
Regulation2700.0430.03200.176
ETech2670.0170.02400.145
EI2700.0020.00100.010
EIndustry2701.0780.01108.189
Industry2700.4500.0840.2000.600
Tab.4  Descriptive statistics
variablecolumn (1)column (2)column (3)column (4)
DDstructureDdensityDtreatment
Regulation-0.011a)(-2.67)0.002(0.23)-0.007 a)(-2.67)-0.008 a)(-2.33)
ETech-0.013 a)(-2.68)0.003(0.22)-0.009 a)(-2.08)-0.006 a)(-2.97)
EI-0.221(-1.61)0.260(1.25)-0.398 a)(2.02)-0.067(-0.55)
EIndustry0.027(1.52)-0.018(-0.63)0.023(0.85)0.024(1.47)
Industry-0.006 b)(-1.81)0.002(0.48)-0.002(-0.55)-0.005 b)(-1.81)
Adj- R20.0510.0030.0050.039
Hausman0.4260.1930.1210.748
methodrandom effectrandom effectrandom effectrandom effect
sample200200200200
Tab.5  Regression result
variable10th FYP period (2001-2005)11th FYP period (2006-2010)
Regulation-0.012 a)(-2.18)-0.012 a)(-2.39)
ETech-0.009(-0.71)-0.015 a)(-2.60)
EI-0.045 b)(-1.75)-0.093(-0.60)
EIndustry0.040(1.50)0.004(0.15)
Industry-0.004(-0.74)-0.007 b)(-1.92)
Adj- R20.0360.094
methodrandom effectrandom effect
sample87113
Tab.6  Regression result (during the 10th FYP period and the 11th FYP period)
variableenvironmental regulationenvironmental technology
highlowhighlow
Regulation-0.014 a)(-1.96)-0.001(-0.03)-0.003(-0.34)-0.016 b)(-1.82)
ETech-0.010 b)(-2.59)-0.012(-0.75)-0.009(-0.96)0.019(0.32)
EI-0.033*(-1.18)-0.013(-1.22)-0.033(-1.58)-0.074(-0.44)
EIndustry0.021 b)(1.66)0.034(0.81)0.021(0.96)0.028(1.02)
Industry0.001(0.46)-0.008(-1.50)-0.001(-0.23)-0.008 b)(-1.68)
Adj- R20.1280.0610.0340.063
methodrandom effectrandom effectrandom effectrandom effect
Sample1069466134
Tab.7  Regression result (under different circumstances of environmental regulation and technology)
1 Zotter K A. “End-of-pipe” versus “process-integrated” water conservation solutions – a comparison of planning, implementation and operating phases. Journal of Cleaner Production , 2004, 12(7): 685-695
2 Hitchens D, Trainor M, Clausen J, Thankappan S B, de Marchi B. Small and Medium Sized Companies in Europe: Environmental Performance, Competitiveness and Management: International EU Case Studies. Heidelberg: Springer Verlag, 2003
3 Frondel M, Horbach J, Rennings K. End-of-pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries. Business Strategy and the Environment , 2007, 16(8): 571-584
4 Rennings K, Ziegler A, Zwick T. Employment changes in environmentally innovative firms. ZEW Working Paper , No.01-46, 2001. Available online at http://scholar.google.com/scholar?q=Employment+changes+in+environmentally+innovative+firms&btnG=&hl=zh-CN&as_sdt=0%2C5 (accessed May302013).
5 Rennings K, Kemp R, Bartolomeo M, Hemmelskamp J, Hitchens D. Blueprints for an integration of science, technology and environmental policy (BLUEPRINT). Zentrum für Europ?ische Witschaftsführung (ZEW) , 2003. Available online at http://scholar.google.com.hk/scholar?q=Blueprints+for+an+integration+of+science,+technology+and+environmental+policy&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart&sa=X&ei=rXSoUc2HNo3pkgX7roDIDA&ved=0CCgQgQMwAA (accessed May30, 2013)
6 Zhou S X. Exploring a new road for environmental protection in China, and building a strong technology support system. Environment and Ecology , 2011, 8(3): 515 (in Chinese)
7 Jaffe A B, Newell R G, Stavins R N. Environmental policy and technological change. Environmental and Resource Economics , 2002, 22(1-2): 41-70
doi: 10.1023/A:1015519401088
8 Brunnermeier S B, Cohen M A. Determinants of environmental innovation in US manufacturing industries. Journal of Environmental Economics and Management , 2003, 45(2): 278-293
doi: 10.1016/S0095-0696(02)00058-X
9 Anderson S T, Newell R G. Information programs for technology adoption: the case of energy-efficiency audits. Resource and Energy Economics , 2004, 26(1): 27-50
10 Kerr S, Newell R G. Policy-induced technology adoption: evidence from the US lead phase down. Journal of Industrial Economics , 2003, 51(3): 317-343
doi: 10.1111/1467-6451.00203
11 Lee S Y, Rhee S K. From end-of-pipe technology towards pollution preventive approach: the evolution of corporate environmentalism in Korea. Journal of Cleaner Production , 2005, 13(4): 387-395
doi: 10.1016/j.jclepro.2003.10.010
12 Hammar H, L?fgren A. Explaining adoption of end of pipe solutions and clean technologies - determinants of firms’ investments for reducing emissions to air in four sectors in Sweden. Energy Policy , 2010, 38(7): 3644-3651
doi: 10.1016/j.enpol.2010.02.041
13 Pavitt K. Sectoral patterns of technical change: towards a taxonomy and a theory. Research Policy , 1984, 13(6): 343-373
doi: 10.1016/0048-7333(84)90018-0
14 Sun X, Lei H Y. Empirical research on the effect of whole process pollution reduction in China - take the provincial SO2 reduction as an example. East China Economic Management , 2012, 26(7): 58-61 (in Chinese)
15 Ang B W, Choi K H. Decomposition of aggregate energy and gas emission intensities for industry: a refined Divisia Index method. Energy , 1997, 18(3): 59-73
16 Howarth R B, Schipper L, Duerr P A, Str?m S. Manufacturing energy use in eight OECD countries. Energy Economics , 1991, 13(2): 135-142
doi: 10.1016/0140-9883(91)90046-3
17 Park S H. Decomposition of industrial energy consumption: an alternative method. Energy Economics , 1992, 14(4): 265-270
doi: 10.1016/0140-9883(92)90031-8
18 Boyd G A, Hanson D A, Sterner T. Decomposition of changes in energy intensity:a comparison of the Divisia Index and other methods. Energy Economics , 1988, 10(4): 309-312
doi: 10.1016/0140-9883(88)90042-4
19 Yu F, Qi J G. Decomposing and analyzing the environmental pollution under the opening economic circumstances. Statistical Research , 2007, 24(1): 47-53 (in Chinese)
20 Lin Q H, Chen G Y, Du W C, Niu H P. Spillover effect of environmental investment: evidence from panel data at provincial level in China. Frontiers of Environmental Science & Engineering , 2012, 6(3): 412-420
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed