Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (6) : 833-835    https://doi.org/10.1007/s11783-013-0570-8
SHORT COMMUNICATION
Ozone kinetics of dimethyl sulfide in the presence of water vapor
Haitao WANG1,2()
1. Chemical Defense Research Institute of Beijing, Beijing 102205, China; 2. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
 Download: PDF(79 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The outdoor smog chamber was used to thorough investigate the rate constants of gas-phase reaction between dimethyl sulfide (DMS) and ozone (O3) under conditions of relative humidity 55.0%–67.8% at (296±2)K for the first time. The rate constants were measured, at a total pressure of 1 atm, to be (10.4±0.2) × 10-19 cm3·molecule-1·s-1 at relative humidity of 67.5%±0.3% at 298K, (10.1±0.1) × 10-19 cm3·molecule-1·s-1 at relative humidity of 66.5%±0.5% at 296K, (7.75±0.39) × 10-19 cm3·molecule-1·s-1at relative humidity of 64.8%±0.1% at 294K and (3.42±0.21) × 10-19 cm3·molecule-1·s-1at relative humidity of 55.8%±0.8% at 295K. Base on these results, it is possible to see the reaction of O3/DMS in the presence of water vapor as an important sink for DMS in the earth atmosphere.

Keywords rate constants      ozone (O3)      dimethyl sulfide (DMS)      water vapor     
Corresponding Author(s): WANG Haitao,Email:dr.wanghaitao@gmail.com   
Issue Date: 01 December 2013
 Cite this article:   
Haitao WANG. Ozone kinetics of dimethyl sulfide in the presence of water vapor[J]. Front Envir Sci Eng, 2013, 7(6): 833-835.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0570-8
https://academic.hep.com.cn/fese/EN/Y2013/V7/I6/833
referenceT/Khumidityk1/( × 10-19 cm3·molecule-1·s-1)techniquelife time/d
this work29867.5%±0.3%10.40±0.10indoor smog chamber12
29666.5%±0.5%10.00±0.1012
29464.8%±0.1%7.75±0.3916
29555.4%±0.8%3.42±0.2135
Wang et al. [5]2980%0.15±0.01indoor smog chamber1590
Du et al. [7]300unknown1.04±0.21indoor smog chamber227
Martinez and Herron[13]296unknown<8.30stopped-flow photoionization mass>29
Tab.1  Summary of principal DMS ozone oxidation processes in the atmosphere
Fig.1  Time dependent mixing ratio of O measured in the ozonolysis experiment. It was carried out in the dark chamber, with an initial gas mixture of 5.4 × 10 molecules·cm ozone and 1.2 × 10 molecules·cm CO at relative humidity of 55%±10%. Monitoring started 30 min after injection
1 Fairall C W, Yang M, Bariteau L, Edson J B, Helmig D, McGillis W, Pezoa S, Hare J E, Huebert B, Blomquist B., Implementation of the coupled ocean-atmosphere response experiment flux algorithm with CO2, dimethyl sulfide, and O3. Journal of Geophysical Research , 2011, 116(C00F09):
doi: 10.1029/2010JC006884
2 Bates T S, Lamb B K, Guenther A, Dignon J, Stoiber R E. Sulfur emissions to the atmsphere for natural sources. Journal of Atmospheric Chemistry , 1992, 14(1–4): 315–337
doi: 10.1007/BF00115242
3 Winer A M, Atkinson R, Pitts J N. Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic organic compounds. Scince , 1984, 224(4645): 156–159
doi: 10.1126/science.224.4645.156 pmid:17744681
4 Stickel R E, Nicovich J M, Wang S, Zhao Z, Wine P H. Kinetic and mechanistic study of the reaction of atomic chlorine with dimethyl sulfide. Journal of Physical Chemistry , 1992, 96(24): 9875–9883
doi: 10.1021/j100203a055
5 Wang H T, Zhang Y J, Mu Y J. Temperature dependence of the absolute rate constant for the reaction of ozone with dimethyl sulfide. Journal of Environmental Sciences-China , 2007, 19(6): 641–643
doi: 10.1016/S1001-0742(07)60106-5 pmid:17969632
6 Lee Y, Zhou X. Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric implications. Journal of Geophysical Research , 1994, 99(D2): 3597–3605
doi: 10.1029/93JD02919
7 Barcellos Da Rosa M, Behnke W, Zetzsch C. Study of the heterogeneous reaction of O3 with CH3SCH3 using the wetted-wall flowtube technique. Atmospheric Chemistry and Physics , 2003, 3(5): 1965–1673
doi: 10.5194/acp-3-1665-2003
8 Du L, Xu Y, Ge M, Jia L, Yao L, Wang W. Rate constant of gas-phase of reaction of dimethyl sulfide (CH3SCH3) with ozone. Chemical Physics Letters , 2007, 436(1–3): 36–40
doi: 10.1016/j.cplett.2007.01.025
9 Hatakeyama S, Leu M T. Rate constants for reactions between atmospheric reservoir species.2.water. Journal of Physical Chemistry , 1989, 93(15): 5784–5789
doi: 10.1021/j100352a027
10 Arin L M, Warneck P. Reaction of ozone with carbon monoxide. Journal of Physical Chemistry , 1972, 76(11): 1514–1516
doi: 10.1021/j100655a002 pmid:5030679
11 Kosak-Channing L F, Helz G R. Solubility of ozone in aqueous solutions of 0-0.6 M ionic strength at 5°C–30°C. Environmental Science & Technology , 1983, 17(3): 145–149
doi: 10.1021/es00109a005 pmid:22263678
12 Eberhard R, Hendrik S, Adrian S. Ozone solubilities in water and aqueous salt solutions. Journal of Chemical & Engineering Data , 2000, 45(2): 338–340
doi: 10.1021/je990263c
13 Martinez R I, Herron J T. Stopped-flow study of the gas-phase reaction of ozone with organic sulfides: dimethyl sulfide. International Journal of Chemical Kinetics , 1978, 10(5): 433–452
doi: 10.1002/kin.550100503
14 Gershenzon M, Davidovits P, Jaync J T, Kolb C E, Worsnop D R. Simultaneous uptake of DMS and ozone on water. Journal of Physical Chemistry A , 2001, 105(29): 7031–7036
doi: 10.1021/jp010696y
15 Stotelo J L, Beltran F J, Benitez F J, Beltran-Heredia J. Henry’s law constant for the ozone-water system. Water Research , 1989, 23(10): 1239–1246
doi: 10.1016/0043-1354(89)90186-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed