Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 226-238    https://doi.org/10.1007/s11783-013-0582-4
RESEARCH ARTICLE
Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)
Meng XUE, Yihui ZHOU, Zhongyi YANG(), Biyun LIN, Jiangang YUAN, Shanshan WU
State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
 Download: PDF(821 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.). Root cell wall played a key role in limiting soil Cd from entering the protoplast, especially in the low-Cd cultivars. The high-Cd cultivars had significantly higher leaf and stem Cd concentrations than the low-Cd cultivars in cell wall fraction, chloroplast/trophoplast fraction, organelle fraction and soluble fraction. In low-Cd cultivars, which were more sensitive and thus had greater physiological needs of Cd detoxification than high-Cd cultivars, leaf vacuole sequestrated higher proportions of Cd. Cd in the form of pectate/protein complexes (extracted by 1 mol·L-1 NaCl) played a decisive role in Cd translocation from root to shoot, which might be one of the mechanisms that led to the differences in shoot Cd accumulation between the two types of cultivars. Furthermore, the formation of Cd-phosphate complexes (extracted by 2% HAc) was also involved in Cd detoxification within the roots of pakchoi under high Cd stress, suggesting that the mechanisms of Cd detoxification might be different between low- and high-Cd cultivars.

Keywords cadmium (Cd)      low-Cd cultivar      pakchoi (Brassica chinensis L.)      subcellular distribution      chemical forms     
Corresponding Author(s): YANG Zhongyi,Email:adsyzy@mail.sysu.edu.cn   
Issue Date: 01 April 2014
 Cite this article:   
Meng XUE,Yihui ZHOU,Zhongyi YANG, et al. Comparisons in subcellular and biochemical behaviors of cadmium between low-Cd and high-Cd accumulation cultivars of pakchoi (Brassica chinensis L.)[J]. Front Envir Sci Eng, 2014, 8(2): 226-238.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0582-4
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/226
Fig.1  Cd concentrations in leaf, stem and root of the tested cultivars in the two experiments: (a) pot experiment; (b) hydroponic experiment. Cd levels in CK (Control soil), M (Middle Cd level soil) and H (High Cd level soil) were 0.165, 0.727 and 1.26 mg·kg respectively. Values with the same letter within the same treatment are not significantly different at the 5% level according to the LSD test
pot experimenthydroponic experiment
Cd levelCK/(0.165 mg·kg-1)M/(0.727 mg·kg-1)H/(1.26 mg·kg-1)0.20/(mg·L-1)0.80/(mg·L-1)1.5/(mg·L-1)
AJKSHY (low-Cd cultivar)0.730 A0.328 B0.272 B0.0166 C0.0488 B0.0347 A
BMG (low-Cd cultivar)0.429 B0.275 B0.237 B0.0183 C0.0426 B0.0371 A
SYM (high-Cd cultivar)0.491 AB0.717 A0.936 A0.0605 B0.0439 B0.0366 A
AJSZQ (high-Cd cultivar)0.508 AB0.829 A0.976 A0.107 A0.0865 A0.0494 A
CD b)0.8622.563.764.801.431.20
Tab.1  Cd translocation factors (TFs) of the tested cultivars
pot experimenthydroponic experiment
Cd levelCK/(0.165 mg·kg-1)M/(0.727 mg·kg-1)H/(1.26 mg·kg-1)0.20/(mg·L-1)0.80/(mg·L-1)1.5/(mg·L-1)
AJKSHY (low-Cd cultivar)0.480 A0.341 C0.319 B15.9 B14.8 B14.0 AB
BMG (low-Cd cultivar)0.348 A0.322 C0.274 B14.4 B14.9 B13.2 B
SYM (high-Cd cultivar)0.414 A0.679 B1.02 A45.1 A20.6 A13.5 B
AJSZQ (high-Cd cultivar)0.420 A0.831 A0.867 A48.8 A25.3 A17.8 A
CD b)1.012.283.193.091.541.15
Tab.2  Cd bioaccumulation factors (BFs) of the tested cultivars
Fig.2  Cd concentrations in different subcellular fractions of leaf, stem and root grown under three Cd levels in the pot experiment. Cd levels in CK (CK-soil), M (M-soil) and H (H-soil) were 0.165, 0.727 and 1.26 mg·kg respectively. (a) F1: cell wall fraction; (b) F2: chloroplast/trophoplast fraction; (c) F3: organelle fraction; (d) F4: soluble fraction. Different letters indicate significant difference at <0.05 level among cultivars within the same treatment
Cd levelCK /(0.165 mg·kg-1)M /(0.727 mg·kg-1)H /(1.26 mg·kg-1)
low-Cd cultivarhigh-Cd cultivarlow-Cd cultivarhigh-Cd cultivarlow-Cd cultivarhigh-Cd cultivar
AJKSHYBMGSYMAJSZQAJKSHYBMGSYMAJSZQAJKSHYBMGSYMAJSZQ
LeafF1 a)34.632.832.137.032.739.042.041.039.532.130.038.5
F2 b)29.031.820.923.626.623.928.725.320.626.031.322.1
F3 c)10.39.7112.74.379.927.105.476.794.794.1910.210.4
F4 d)26.125.734.335.030.730.023.826.935.137.728.529.0
stemF141.744.937.738.338.636.237.738.640.437.236.540.6
F218.816.920.218.320.018.221.817.421.524.325.921.5
F312.65.897.358.946.617.696.677.886.327.998.426.64
F426.932.334.834.534.837.933.836.131.730.629.231.2
rootF151.552.149.551.851.557.159.957.655.256.346.252.0
F224.927.727.924.025.423.824.625.527.526.235.127.7
F34.565.355.943.865.464.133.753.342.943.684.035.03
F419.114.816.720.317.614.911.813.614.313.814.715.3
Tab.3  Proportion of Cd (%) in each subcellular fraction to the total Cd amount in different tissues
Fig.3  Concentrations of Cd in different chemical forms under three Cd levels in the hydroponic experiment. F, F, F, F and Frepresent the fractions extracted by 80% ethanol, deionized water, 1 mol·LNaCl, 2% HAc and 0.6 mol·LHCl; F represents the residual fraction. Different letters indicate significant difference at <0.05 level among cultivars within the same treatment. (a) leaf-F; (b) stem-F; (c) root-F; (d) leaf-F; (e) stem-F; (f) root-F; (g) leaf-F; (h) stem-F; (i) root- F; (j) leaf-F; (k) stem-F; (l) root-F; (m) leaf-F; (n) stem-F; (o) root-F; (p) leaf-F; (q) stem-F; (r) root-F
Cd level0.20 /(mg·L-1)0.80 /(mg·L-1)1.5 /(mg·L-1)
low-Cd cultivarhigh-Cd cultivarlow-Cd cultivarhigh-Cd cultivarlow-Cd cultivarhigh-Cd cultivar
AJKSHYBMGSYMAJSZQAJKSHYBMGSYMAJSZQAJKSHYBMGSYMAJSZQ
leafFEa)2.742.230.7731.261.011.571.431.231.231.161.621.47
FD14.714.321.415.326.322.323.825.529.027.529.432.9
FNaCl20.825.434.130.031.434.743.138.732.634.537.838.2
FHAc60.055.641.951.339.939.530.032.735.535.029.926.3
FHCl1.692.431.842.091.411.921.721.811.711.811.321.12
FResidue0.1020.04710.03810.02670.01580.03140.02820.03810.02280.02970.03270.0390
stemFE9.558.285.515.433.824.442.472.711.582.862.222.16
FD16.814.515.314.317.219.418.520.530.221.927.629.2
FNaCl30.438.536.331.338.537.840.737.042.240.844.634.2
FHAc40.836.540.345.637.635.435.335.624.231.922.831.0
FHCl2.402.202.413.302.732.862.904.081.842.532.793.34
FResidue0.03720.05540.07260.06450.1050.1010.05090.07260.02740.07560.03240.0575
rootFE1.321.782.171.810.7531.881.391.430.9481.311.050.940
FD11.812.08.2111.111.112.68.417.028.708.974.855.22
FNaCl21.925.932.650.139.437.932.829.731.127.722.918.9
FHAc56.355.048.833.744.443.150.351.549.052.156.564.8
FHCl7.895.077.493.164.084.316.639.589.729.1913.69.45
FResidue0.7180.3110.7110.2230.2090.2390.4160.7580.4770.7001.080.669
Tab.4  Proportion (%) of Cd in different chemical forms in different tissues
1 Salt D E, Blaylock M, Kumar N P B A, Dushenkov V, Ensley B D, Chet I, Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology , 1995, 13(5): 468–474
doi: 10.1038/nbt0595-468 pmid:9634787
2 Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. The Science of the Total Environment , 2006, 370(2–3): 302–309
doi: 10.1016/j.scitotenv.2006.06.013 pmid:16870236
3 Grant C A, Clarke J M, Duguid S, Chaney R L. Selection and breeding of plant cultivars to minimize cadmium accumulation. The Science of the Total Environment , 2008, 390(2–3): 301–310
doi: 10.1016/j.scitotenv.2007.10.038 pmid:18036635
4 Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser M T. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution , 2012, 163(1): 117–126
doi: 10.1016/j.envpol.2011.12.031 pmid:22325439
5 Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters , 2004, 576(3): 306–312
doi: 10.1016/j.febslet.2004.09.023 pmid:15498553
6 Wu F B, Dong J, Qian Q Q, Zhang G P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere , 2005, 60(10): 1437–1446
doi: 10.1016/j.chemosphere.2005.01.071 pmid:16054913
7 Arduini I, Masoni A, Mariotti M, Ercoli L. Low cadmium application increase miscanthus growth and cadmium translocation. Environmental and Experimental Botany , 2004, 52(2): 89–100
doi: 10.1016/j.envexpbot.2004.01.001
8 Yu H, Xiang Z X, Zhu Y, Wang J L, Yang Z J, Yang Z Y. Subcellular and molecular distribution of cadmium in two rice genotypes with different levels of cadmium accumulation. Journal of Plant Nutrition , 2012, 35(1): 71–84
doi: 10.1080/01904167.2012.631668
9 Grispen V M J, Nelissen H J M, Verkleij J A C. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environmental Pollution , 2006, 144(1): 77–83
doi: 10.1016/j.envpol.2006.01.007 pmid:16515826
10 Qiu Q, Wang Y T, Yang Z Y, Yuan J G. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food and Chemical Toxicology , 2011, 49(9): 2260–2267
doi: 10.1016/j.fct.2011.06.024 pmid:21693161
11 Lu R K. Soil and Agro-Chemistry Analysis Methods. Beijing: Agricultural Science and Technology Press, 2000 (in Chinese)
12 Chen Y H, Huang S H, Liu S H, Wang G P, Ding F, Shao Z C, Shen Z G. Study of the heavy metal contamination in soils and vegetables in Nanjing area. Resources and Environment in the Yangtze Basin , 2006, 15(3): 356–360 (in Chinese)
13 Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta , 2001, 212(5–6): 696–709
doi: 10.1007/s004250000439 pmid:11346943
14 Chen Y, Li T Q, Yang X E, Jin Y F. Differences in cadmium absorption and accumulation of Brassica varieties on cadmium-polluted soil. Chinese Journal Applied Ecology , 2009, 20(3): 736–740 (in Chinese)
pmid:19637618
15 von Zglinicki T, Edwall C, Ostlund E, Lind B, Nordberg M, Ringertz N R, Wroblewski J. Very low cadmium concentrations stimulate DNA synthesis and cell growth. Journal of Cell Science , 1992, 103(Pt 4): 1073–1081
pmid:1487490
16 Nyitrai P, Bóka K, Gáspár L, Sárvári E, Lenti K, Keresztes A. Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. Journal of Plant Physiology , 2003, 160(10): 1175–1183
doi: 10.1078/0176-1617-00770 pmid:14610886
17 Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery , 1989, 1(2): 81–126
18 Chen A, Komives E A, Schroeder J I. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiology , 2006, 141(1): 108–120
doi: 10.1104/pp.105.072637 pmid:16531489
19 Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie , 2006, 88(11): 1707–1719
doi: 10.1016/j.biochi.2006.07.003 pmid:16914250
20 Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany , 2009, 60(9): 2677–2688
doi: 10.1093/jxb/erp119 pmid:19401409
21 Macfie S M, Tarmohamed Y, Welbourn P M. Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: The influences of the cell wall and pH. Archives of Environmental Contamination and Toxicology , 1994, 27(4): 454–458
doi: 10.1007/BF00214835
22 He J Y, Zhu C, Ren Y F, Yan Y P, Cheng C, Jiang D A, Sun Z X. Uptake, subcellular distribution, and chemical forms of cadmium in wild-type and mutant rice. Pedosphere , 2008, 18(3): 371–377
doi: 10.1016/S1002-0160(08)60027-2
23 Ramos I, Esteban E, Lucena J J, Gárate A. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Science , 2002, 162(5): 761–767
doi: 10.1016/S0168-9452(02)00017-1
24 Weigel H J, J?ger H J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology , 1980, 65(3): 480–482
doi: 10.1104/pp.65.3.480 pmid:16661218
25 Dhir B, Sharmila P, Pardha Saradhi P, Sharma S, Kumar R, Mehta D. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety , 2011, 74(6): 1678–1684
doi: 10.1016/j.ecoenv.2011.05.009 pmid:21724257
26 Faller P, Kienzler K, Krieger-Liszkay A. Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica et Biophysica Acta , 2005, 1706(1–2): 158–164
doi: 10.1016/j.bbabio.2004.10.005 pmid:15620376
27 V?geli-Lange R, Wagner G J. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiology , 1990, 92(4): 1086–1093
doi: 10.1104/pp.92.4.1086 pmid:16667375
28 Xu J L, Bao Z P, Yang J R, Liu H, Song W C. Chemical forms of Cd, Pb and Cu in crops. Ying Yong Sheng Tai Xue Bao , 1991, 2(3): 244–248 (in Chinese)
29 Salt D E, Prince R C, Pickering I J, Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology , 1995, 109(4): 1427–1433
pmid:12228679
30 Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology , 2002, 53(1): 159–182
doi: 10.1146/annurev.arplant.53.100301.135154 pmid:12221971
31 Najmanova J, Neumannova E, Leonhardt T, Zitka O, Kizek R, Macek T, Mackova M, Kotrba P. Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Industrial Crops and Products , 2012, 36(1): 536–542
doi: 10.1016/j.indcrop.2011.11.008
32 Caruso J A, Montes-Bayon M. Elemental speciation studies—new directions for trace metal analysis. Ecotoxicology and Environmental Safety , 2003, 56(1): 148–163
doi: 10.1016/S0147-6513(03)00058-7 pmid:12915148
33 Wang J, Evangelou B P, Nielsen M T, Wagner G J. Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles: I. Cadmium. Plant Physiology , 1991, 97(3): 1154–1160
doi: 10.1104/pp.97.3.1154 pmid:16668502
34 Castillo-Michel H A, Hernandez N, Martinez-Martinez A, Parsons J G, Peralta-Videa J R, Gardea-Torresdey J L. Coordination and speciation of cadmium in corn seedlings and its effects on macro- and micronutrients uptake. Plant Physiology and Biochemistry , 2009, 47(7): 608–614
doi: 10.1016/j.plaphy.2009.02.005 pmid:19285423
35 Jiang H M, Yang J C, Zhang J F. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution , 2007, 147(3): 750–756
doi: 10.1016/j.envpol.2006.09.006 pmid:17275154
[1] Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
[2] Yanqun ZU,Yuan LI,Huan MIN,Fangdong ZHAN,Li QIN,Jixiu WANG. Subcellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition[J]. Front. Environ. Sci. Eng., 2015, 9(2): 250-258.
[3] Yihui ZHOU, Meng XUE, Zhongyi YANG, Yulian GONG, Jiangang YUAN, Chunyan ZHOU, Baifei HUANG. High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk[J]. Front Envir Sci Eng, 2013, 7(2): 219-230.
[4] Kun ZHANG, Jianbing WANG, Zhongyi YANG, Guorong XIN, Jiangang YUAN, Junliang XIN, Charlie HUANG. Genotype variations in accumulation of cadmium and lead in celery (Apium graveolens L.) and screening for low Cd and Pb accumulative cultivars[J]. Front Envir Sci Eng, 2013, 7(1): 85-96.
[5] Lei ZHANG, Jing AN, Qixing ZHOU. Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads[J]. Front Envir Sci Eng, 2012, 6(3): 360-372.
[6] Quanlin DAI, Baifei HUANG, Zhongyi YANG, Jiangang YUAN, Junzhi YANG. Identification of cadmium-induced genes in maize seedlings by suppression subtractive hybridization[J]. Front Envir Sci Eng Chin, 2010, 4(4): 449-458.
[7] Guixiang ZHANG, Xitao LIU, Ke SUN, Ye ZHAO, Chunye LIN. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils[J]. Front Envir Sci Eng Chin, 2010, 4(4): 421-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed