Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 458-466    https://doi.org/10.1007/s11783-015-0802-1
RESEARCH ARTICLE
Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts
Nanli QIAO1,Xin ZHANG1,Chi HE2,Yang LI1,Zhongshen ZHANG1,Jie CHENG1,Zhengping HAO1,*()
1. Department of Environmental Nano-materials and Technologies, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(716 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h-1, the 90% conversion of o-xylene has been obtained at around 200°C. The BET and SEM results indicated that Pd/MMS-b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.

Keywords hierarchical macro-/mesoporous      silica      palladium      VOCs catalytic oxidation     
Corresponding Author(s): Zhengping HAO   
Online First Date: 17 July 2015    Issue Date: 05 April 2016
 Cite this article:   
Nanli QIAO,Xin ZHANG,Chi HE, et al. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts[J]. Front. Environ. Sci. Eng., 2016, 10(3): 458-466.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0802-1
https://academic.hep.com.cn/fese/EN/Y2016/V10/I3/458
Fig.1  Low angle powder XRD patterns of the support
sample weight TEOS/PS SBETa/(m2·g-1) Vpb/(cm3·g-1) Dpc/nm d100d/nm a0e/nm Wf/nm
SBA-15 1:0 814 1.24 5.75 9.51 10.98 5.23
MMS-a 1:0.5 733 0.88 4.88 9.47 10.94 6.06
MMS-b 1:1 686 0.91 5.22 9.02 10.42 5.20
MMS-c 1:2 676 0.83 4.69 8.98 10.37 5.68
Tab.1  The physical and textural properties of catalyst supports
Fig.2  N2 adsorption/desorption isotherms (a) and pore size distribution calculated from the desorption branch (b) of the support
Fig.3  SEM images of the support: (a) SBA-15, (b) MMS-a (c) MMS-b and (d) MMS-c. The magnified SEM images of the MMS-d sample (e and f). TEM images of the MMS-b (g)
catalyst SBET/(m2·g-1) Vpb/(cm3·g-1) Pd loading/(wt.%) dispersion/% 42000 h-1 52500 h-1 70000 h-1
T10 T90 T10 T90 T10 T90
Pd/SBA-15 673 0.92 0.28 20 112 188 146 205 166 218
Pd/MMS-a 612 0.62 0.39 37 118 173 145 199 157 223
Pd/MMS-b 604 0.81 0.38 66 122 174 136 188 144 200
Pd/MMS-c 487 0.76 0.38 57 152 202 - - - -
Tab.2  Characteristic data and catalytic activity of the synthesized catalysts
Fig.4  TEM images of Pd/MMS-b catalyst
Fig.5  H2-TPR profiles of catalysts
Fig.6  Conversion profiles of o-xylene catalytic oxidation under different GHSV: (a) 42000h-1; (b) 52500h-1; (c) 70000h-1
1 Huang Q, Xue X, Zhou R. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts: effect of acidity and redox property on the catalytic behavior. Journal of Hazardous Materials, 2010, 183(1-3): 694–700
https://doi.org/10.1016/j.jhazmat.2010.07.081 pmid: 20709452
2 Schottler M, Hottenroth H, Schluter B, Schmidt M. Volatile organic compound abatement in semiconductor and solar cell fabrication with respect to resource depletion. Chemical Engineering & Technology, 2010, 33(4): 638–646
https://doi.org/10.1002/ceat.200900433
3 Fang B, Kim J H, Kim M S, Yu J S. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Accounts of Chemical Research, 2013, 46(7): 1397–1406
https://doi.org/10.1021/ar300253f pmid: 23270494
4 Yao J M, Zhan W C, Liu X H, Guo Y L, Wang Y Q, Guo Y, Lu G Z. Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation. Microporous and Mesoporous Materials, 2012, 148(1): 131–136
https://doi.org/10.1016/j.micromeso.2011.08.006
5 Popova M, Szegedi A, Cherkezova-Zheleva Z, Mitov I, Kostova N, Tsoncheva T. Toluene oxidation on titanium- and iron-modified MCM-41 materials. Journal of Hazardous Materials, 2009, 168(1): 226–232
https://doi.org/10.1016/j.jhazmat.2009.02.018 pmid: 19269739
6 Zhao W, Cheng J, Wang L N, Chu J L, Qu J K, Liu Y H, Li S H, Zhang H, Wang J C, Hao Z P, Qi T. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS. Applied Catalysis B: Environmental, 2012, 127: 246–254
https://doi.org/10.1016/j.apcatb.2012.08.019
7 Tsoncheva T, Issa G, Nieto J M L, Blasco T, Concepcion P, Dimitrov M, Atanasova G, Kovacheva D. Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180: 156–161
https://doi.org/10.1016/j.micromeso.2013.06.017
8 He C, Li P, Wang H, Cheng J, Zhang X, Wang Y, Hao Z. Ligand-assisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene. Journal of Hazardous Materials, 2010, 181(1-3): 996–1003
https://doi.org/10.1016/j.jhazmat.2010.05.113 pmid: 20541863
9 Bendahou K, Cherif L, Siffert S, Tidahy H L, Benaïssa H, Aboukaïs A. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A, 2008, 351(1): 82–87
https://doi.org/10.1016/j.apcata.2008.09.001
10 Ramanathan A, Subramaniam B, Maheswari R, Hanefeld U. Synthesis and characterization of Zirconium incorporated ultra large pore mesoporous silicate, Zr–KIT-6. Microporous and Mesoporous Materials, 2013, 167: 207–212
https://doi.org/10.1016/j.micromeso.2012.09.008
11 Barbier J. Deactivation of reforming catalysts by coking–a review. Applied Catalysis, 1986, 23(2): 225–243
https://doi.org/10.1016/S0166-9834(00)81294-4
12 Sun Z K, Deng Y H, Wei J, Gu D, Tu B, Zhao D Y. Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chemistry of Materials, 2011, 23(8): 2176–2184
https://doi.org/10.1021/cm103704s
13 Kim Y S, Guo X F, Kim G J. Asymmetric ring opening reaction of catalyst immobilized on silica monolith with bimodal meso/macroscopic pore structure. Topics in Catalysis, 2009, 52(1-2): 197–204
https://doi.org/10.1007/s11244-008-9140-x
14 Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 2011, 5(1): 590–596
https://doi.org/10.1021/nn102767d pmid: 21189003
15 Liu J, Li M, Wang J, Song Y, Jiang L, Murakami T, Fujishima A. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability. Environmental Science & Technology, 2009, 43(24): 9425–9431
https://doi.org/10.1021/es902462c pmid: 20000539
16 Dhainaut J, Dacquin J P, Lee A F, Wilson K. Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chemistry, 2010, 12(2): 296–303
https://doi.org/10.1039/B919341C
17 Chiu J J, Pine D J, Bishop S T, Chmelka B F. Friedel–Crafts alkylation properties of aluminosilica SBA-15 meso/macroporous monoliths and mesoporous powders. Journal of Catalysis, 2004, 221(2): 400–412
https://doi.org/10.1016/j.jcat.2003.09.005
18 Rudisill S G,Wang Z Y, Stein A. Maintaining the structure of templated porous materials for reactive and high-temperature applications. Langmuir, 2012, 28(19): 7310–7324
https://doi.org/10.1021/la300517g
19 Stein A, Wilson B E, Rudisill S G. Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chemical Society Reviews, 2013, 42(7): 2763–2803
https://doi.org/10.1039/C2CS35317B pmid: 23079696
20 Zhao D Y, Huo Q S, Feng J L, Chemlka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
https://doi.org/10.1021/ja974025i
21 Cao E, Sankar M, Nowicka E, He Q, Morad M, Miedziak P J, Taylor S H, Knight D W, Bethell D, Kiely C J, Gavriilidis A, Hutchings G J. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au–Pd nanoparticles. Catalysis Today, 2013, 203: 146–152
https://doi.org/10.1016/j.cattod.2012.05.023
22 Dou J, Zeng H C. Integrated networks of mesoporous silica nanowires and their bifunctional catalysis-sorption application for oxidative desulfurization. ACS Catalysis, 2014, 4(2): 566–576
https://doi.org/10.1021/cs400996j
23 Deng W H, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
https://doi.org/10.1002/adfm.200390007
24 Yuan J, Dai H X, Zhang L, Deng J G, Liu Y X, Zhang H, Jiang H Y, He H. PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catalysis Today, 2011, 175(1): 209–215
https://doi.org/10.1016/j.cattod.2011.04.013
25 Liu B C, Liu Y, Li C Y, Hu W T, Jing P, Wang Q, Zhang J. Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2012, 127: 47–58
https://doi.org/10.1016/j.apcatb.2012.08.005
26 Yun J S, Ihm S K. Synthesis of mesoporous SBA-15 having macropores by dual-templating method. Journal of Physics and Chemistry of Solids, 2008, 69(5-6): 1133–1135
https://doi.org/10.1016/j.jpcs.2007.10.013
27 Parlett C M A, Keshwalla P, Wainwright S G, Bruce D W, Hondow N S, Wilson K, Lee A F. Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols. ACS Catalysis, 2013, 3(9): 2122–2129
https://doi.org/10.1021/cs400371a
28 Parlett C M A, Bruce D W, Hondow N S, Newton M A, Lee A F, Wilson K. Mesoporous silicas as versatile supports to tune the palladium-catalyzed selective aerobic oxidation of allylic alcohols. ChemCatChem, 2013, 5(4): 939–950
https://doi.org/10.1002/cctc.201200301
29 Chen L F, González G, Wang J A, Noreña L E, Toledo A, Castillo S, Morán-Pineda M. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen. Applied Surface Science, 2005, 243(1-4): 319–328
https://doi.org/10.1016/j.apsusc.2004.09.074
30 Becker L, Forster H. Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites. Applied Catalysis B: Environmental, 1998, 17(1-2): 43–49
https://doi.org/10.1016/S0926-3373(97)00102-1
31 He C, Li J J, Cheng J, Li L D, Li P, Hao Z, Xu Z P. Ha Z P, Xu Z P. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930–6936
https://doi.org/10.1021/ie900412c
32 Wang F, Li J S, Yuan J F, Sun X Y, Shen J Y, Han W Q, Wang L J. Short channeled Zr-Ce-SBA-15 supported palladium catalysts for toluene catalytic oxidation. Catalysis Communications, 2011, 12(15): 1415–1419
https://doi.org/10.1016/j.catcom.2011.05.021
33 Pérez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
https://doi.org/10.1039/b809030k pmid: 18949124
34 Kortunov P, Vasenkov S, Kärger J, Valiullin R, Gottschalk P, Elía M F, Perez M, Stöcker M, Drescher B, McElhiney G, Berger C, Gläser R, Weitkamp J. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales. Journal of the American Chemical Society, 2005, 127(37): 13055–13059
https://doi.org/10.1021/ja053134r pmid: 16159301
35 Adrian B. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 1997, 40(4): 799–816
https://doi.org/10.1016/0017-9310(96)00175-5
36 Gheorghiu S, Coppens M O. Optimal bimodal pore networks for heterogeneous catalysis. AIChE Journal. American Institute of Chemical Engineers, 2004, 50(4): 812–820
https://doi.org/10.1002/aic.10076
37 Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559
https://doi.org/10.1021/la047979c pmid: 15752052
38 Dong F, Lee S C, Wu Z, Huang Y, Fu M, Ho W K, Zou S, Wang B. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. Journal of Hazardous Materials, 2011, 195: 346–354
https://doi.org/10.1016/j.jhazmat.2011.08.050 pmid: 21903327
39 Dong F, Sun Y, Ho W K, Wu Z. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Transactions (Cambridge, England), 2012, 41(27): 8270–8284
https://doi.org/10.1039/c2dt30570d pmid: 22622668
40 Parlett C M A, Wilson K, Lee A F. Hierarchical porous materials: catalytic applications. Chemical Society Reviews, 2013, 42(9): 3876–3893
https://doi.org/10.1039/C2CS35378D pmid: 23139061
41 Liu G, Yang K, Li J Q, Tang W X, Xu J B, Liu H D, Yue R L, Chen Y F. Surface diffusion of Pt clusters in/on SiO2 matrix at elevated temperatures and their improved catalytic activities in benzene oxidation. Journal of Physical Chemistry C, 2014, 118(39): 22719–22729
https://doi.org/10.1021/jp501434f
[1] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[2] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[3] Hongtao YU, Bin MA, Shuo CHEN, Qian ZHAO, Xie QUAN, Shahzad AFZAL. Electrocatalytic debromination of BDE-47 at palladized graphene electrode[J]. Front Envir Sci Eng, 2014, 8(2): 180-187.
[4] Zhen MA, Bei ZHOU, Yu REN. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 341-355.
[5] WANG Xuesong, SUN Cheng. Concentrations of anthropogenic Pt and Pd in urban roadside soils in Xuzhou, China[J]. Front.Environ.Sci.Eng., 2008, 2(4): 475-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed