Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 270-275    https://doi.org/10.1007/s11783-015-0813-y
RESEARCH ARTICLE
Cytochrome P450 monooxygenase specific activity reduction in wheat Triticum aestivum induced by soil roxithromycin stress
Kangxin HE,Qixing ZHOU()
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(105 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Roxithromycin, as widely used medicine and livestock growth promoter, arouses concern because its occurrence and persistence in soil environments. However, effects of roxithromycin in higher plants are still vague. Accordingly, we hypothesized that roxithromycin-contaminated soil may exhibits ecotoxicological effects in wheat (Triticum aestivum). In this study, effects induced by a gradient concentration of roxithromycin stress (0.01, 0.1, 1, 10, and 100 mg·kg−1) was investigated in a 7-d soil test in T. aestivum. Results indicated that the specific activity of cytochrome P450 (CYP450) monooxygenase was decreased dramatically with the concentration of roxithromycin in soil. The IC50 value was 8.78 mg·kg−1 of roxithromycin. On the contrary, the growth related endpoints (i.e., the germination percentage, the biomass and the height), the content related endpoints (i.e., soluble protein content and CYP450 content), and the superoxide dismutase (SOD) activity failed to reveal the roxithromycin-induced effects. Further analysis revealed that the CYP450 monooxygenase specific activity reduction was enzymatic mechanism mediated, other than oxidative stress induced. We conclude that the soil roxithromycin declined the CYP450 monooxygenase activity in T. aestivum by the inhibition of the enzymatic mechanism. Further efforts can include, but are not limited to, investigation of joint effects induced by combined exposure of roxithromycin and the pesticides and evaluation of the similar effects in other higher plants.

Keywords roxithromycin      toxic effect      cytochrome P450 monooxygenase      soil environment      Triticum aestivum      biomarker     
Corresponding Author(s): Qixing ZHOU   
Online First Date: 01 September 2015    Issue Date: 01 February 2016
 Cite this article:   
Kangxin HE,Qixing ZHOU. Cytochrome P450 monooxygenase specific activity reduction in wheat Triticum aestivum induced by soil roxithromycin stress[J]. Front. Environ. Sci. Eng., 2016, 10(2): 270-275.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0813-y
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/270
soil parameter value soil parameter value
soil pH 8.10±0.03 total N/% 0.95±0.09
CEC /(cmol·kg−1) 18.3±1.9 total P/(mg·kg−1) 0.51±0.06
clay /% 25.4±2.3 total K/(mg·kg−1) 13.01±0.27
silt /% 41.7±3.9 total Zn/(mg·kg−1) 60.9±8.16
sand /% 32.9±1.8 total Ca/(g·kg−1) 100.2±7.95
TOC /% 22.34±1.91 total Mg/(mg·kg−1) 707±50
total Na/(mg·kg−1) 0.49±0.18
Tab.1  Basic characteristics of the tested soil
RXM concentration /(mg·kg−1 dry soil) soluble protein content /(μg·g−1 biomass) CYP450 content /(pmol·mg−1 Pro) specific activity of CYP450 monooxygenase /(nmol CHL·μmol−1 CYP450·min−1) SOD activity /(U·mg−1 Pro)
CK 49.06±8.88 253.27±33.43 50.98±5.85 104.68±14.06
0.01 50.38±7.09 265.40±27.67 45.60±4.57* 104.95±8.12
0.10 50.87±6.62 263.85±27.21 44.69±3.16* 105.07±13.09
1.00 51.19±6.31 269.03±30.97 41.71±4.83* 104.85±13.37
10.0 51.38±7.40 265.00±32.11 25.38±4.35* 104.44±8.77
100 51.96±7.92 264.57±29.35 17.44±4.09* 100.33±16.35
Tab.2  Content of soluble protein and CYP450 and the activity of CYP450 monooxygenase and SOD in wheat (Triticum aestivum) after a 7-day exposure to roxithromycin in soil
RXM concentration /(mg·kg−1 dry soil) germination percentage /% shoot biomass /(fresh weight, g) height of wheat shoots /cm
CK 96.67 2.08±0.19 18.50±1.95
0.01 93.33 2.09±0.19 18.13±1.91
0.1 93.33 2.09±0.15 18.72±2.13
1.00 90.00 2.11±0.17 18.69±1.88
10.00 96.67 2.09±0.17 18.28±1.91
100.00 93.33 2.05±0.22 17.59±1.38
Tab.3  Germination percentage, shoot biomass and height of wheat (Triticum aestivum) after a 7-day exposure to roxithromycin in soil
1 Zhou  Q X. Ecology of Combined Pollution. Beijing: China Environmental Science Press, 1995 (in Chinese)
2 Yu  B, Wang  X, Yu  S, Li  Q, Zhou  Q. Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat. Applied Microbiology and Biotechnology, 2014, 98(1): 263–272
https://doi.org/10.1007/s00253-013-5311-1 pmid: 24150789
3 Schlüsener  M P, von Arb  M A, Bester  K. Elimination of macrolides, tiamulin, and salinomycin during manure storage. Archives of Environmental Contamination and Toxicology, 2006, 51(1): 21–28
https://doi.org/10.1007/s00244-004-0240-8 pmid: 16485173
4 Schlüsener  M P, Bester  K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environmental Pollution, 2006, 143(3): 565–571
https://doi.org/10.1016/j.envpol.2005.10.049 pmid: 16460854
5 Kumar  K, Gupta  S, Chander  Y, Singh  A K. Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in Agronomy, 2005, 87(1): 1–54
https://doi.org/10.1016/S0065-2113(05)87001-4
6 Walsh  C. Antibiotics: Actions, Origins, Resistance. 1st ed. Washington, DC: ASM Press, 2003, 145–163
7 Luo  Y, Mao  D, Rysz  M, Zhou  Q, Zhang  H, Xu  L, Alvarez  P. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science & Technology, 2010, 44(19): 7220–7225
https://doi.org/10.1021/es100233w pmid: 20509603
8 Villa  P, Sassella  D, Corada  M, Bartosek  I. Toxicity, uptake, and subcellular distribution in rat hepatocytes of roxithromycin, a new semisynthetic macrolide, and erythromycin base. Antimicrobial Agents and Chemotherapy, 1988, 32(10): 1541–1546
https://doi.org/10.1128/AAC.32.10.1541 pmid: 3190183
9 Chang  H R, Pechere  J C. Effect of roxithromycin on acute toxoplasmosis in mice. Antimicrobial Agents and Chemotherapy, 1987, 31(7): 1147–1149
https://doi.org/10.1128/AAC.31.7.1147 pmid: 3662475
10 Choi  K, Kim  Y, Jung  J, Kim  M H, Kim  C S, Kim  N H, Park  J. Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environmental Toxicology and Chemistry, 2008, 27(3): 711–719
https://doi.org/10.1897/07-143.1 pmid: 17944547
11 Yin  C Y, Luo  Y M, Teng  Y, Zhang  H B, Chen  Y S, Zhao  Y G. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils. Environmental Sciences, 2012, 33(8): 2810–2816
pmid: 23213909
12 d<?Pub Caret?>e Liguoro  M, Cibin  V, Capolongo  F, Halling-Sørensen  B, Montesissa  C. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere, 2003, 52(1): 203–212
https://doi.org/10.1016/S0045-6535(03)00284-4 pmid: 12729703
13 Tamaoki  J, Kadota  J, Takizawa  H. Clinical implications of the immunomodulatory effects of macrolides. American Journal of Medicine Supplements, 2004, 117(9 Suppl 9A): 5S–11S
https://doi.org/10.1016/j.amjmed.2004.07.023 pmid: 15586558
14 Zhou  Q X, Kong  F X, Zhu  L. Introduction to Ecotoxicology. Beijing: Science Press, 2004 (in Chinese)
15 Newhouse  K E, Smith  W A, Starrett  M A, Schaefer  T J, Singh  B K. Tolerance to imidazolinone herbicides in wheat. Plant Physiology, 1992, 100(2): 882–886
https://doi.org/10.1104/pp.100.2.882 pmid: 16653071
16 Christopher  J T, Powles  S B, Liljegren  D R, Holtum  J A. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum) : II. chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiology, 1991, 95(4): 1036–1043
https://doi.org/10.1104/pp.95.4.1036 pmid: 16668088
17 Hurt  R A, Qiu  X, Wu  L, Roh  Y, Palumbo  A V, Tiedje  J M, Zhou  J. Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology, 2001, 67(10): 4495–4503
https://doi.org/10.1128/AEM.67.10.4495-4503.2001 pmid: 11571148
18 Masubuchi  Y, Horie  T. Toxicological significance of mechanism-based inactivation of cytochrome p450 enzymes by drugs. Critical Reviews in Toxicology, 2007, 37(5): 389–412
https://doi.org/10.1080/10408440701215233 pmid: 17612953
19 Murray  M. Drug-mediated inactivation of cytochrome P450. Clinical and Experimental Pharmacology & Physiology, 1997, 24(7): 465–470
https://doi.org/10.1111/j.1440-1681.1997.tb01228.x pmid: 9248661
20 Bonjoch  N, Tamayo  P. Protein Content Quantification by Bradford Method, Handbook of Plant Ecophysiology Techniques. Berlin: Springer, 2011, 283–295
21 Li  X X, Song  Y F, Yang  D L, Zhang  W, Song  X Y. Cytochorme P450 in wheat as a biomarker for diagnosing pollution in soil. Environmental Chemistry, 2006, 25(3): 284–287 (in Chinese)
22 Xiang  W S, Wang  X J, Ren  T R. Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides. Pesticide Biochemistry and Physiology, 2006, 85(1): 1–6
https://doi.org/10.1016/j.pestbp.2005.09.001
23 Lin  D, Xie  X, Zhou  Q, Liu  Y. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests. Environmental Toxicology, 2012, 27(7): 385–392
https://doi.org/10.1002/tox.20651 pmid: 22707219
24 Chen  Y M, Hu  X G, Jing  S, Zhou  Q X. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology, online on February 23, 2015
https://doi.org/10.3109/17435390.2015.1005032
25 Coon  M J, Ding  X X, Pernecky  S J, Vaz  A D. Cytochrome P450: progress and predictions. FASEB Journal, 1992, 6(2): 669–673
pmid: 1537454
26 Goksøyr  A. A semi-quantitative cytochrome P450IA1 ELISA: a simple method for studying the monooxygenase induction response in environmental monitoring and ecotoxicological testing of fish. Science of the Total Environment, 1991, 101(3): 255–262
https://doi.org/10.1016/0048-9697(91)90038-G pmid: 1754879
27 Xiao  R, Wang  J, Chen  J, Sun  L, Chen  Y. Effects of arecoline on hepatic cytochrome P450 activity and oxidative stress. Journal of Toxicological Sciences, 2014, 39(4): 609–614
https://doi.org/10.2131/jts.39.609 pmid: 25056785
28 Dupont  I, Bodénez  P, Berthou  F, Simon  B, Bardou  L G, Lucas  D. Cytochrome P-450 2E1 activity and oxidative stress in alcoholic patients. Alcohol and Alcoholism (Oxford, Oxfordshire), 2000, 35(1): 98–103
https://doi.org/10.1093/alcalc/35.1.98 pmid: 10684785
29 Carillon  J, Rouanet  J M, Cristol  J P, Brion  R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharmaceutical Research, 2013, 30(11): 2718–2728
https://doi.org/10.1007/s11095-013-1113-5 pmid: 23793992
30 Hu  X, Mu  L, Kang  J, Lu  K, Zhou  R, Zhou  Q. Humic acid acts as a natural antidote of graphene by regulating nanomaterial translocation and metabolic fluxes in vivo. Environmental Science & Technology, 2014, 48(12): 6919–6927
https://doi.org/10.1021/es5012548 pmid: 24857237
[1] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[2] Yu Miao, Nicholas W. Johnson, Kimberly Heck, Sujin Guo, Camilah D. Powell, Thien Phan, Phillip B. Gedalanga, David T. Adamson, Charles J. Newell, Michael S. Wong, Shaily Mahendra. Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil[J]. Front. Environ. Sci. Eng., 2018, 12(5): 2-.
[3] Lingyan HOU, Yun LU, Ying LI, Li LI. MiRNA-451 is a potential biomarker for estrogenicity in mouse uterus[J]. Front Envir Sci Eng, 2014, 8(1): 99-105.
[4] Lei ZHANG, Jing AN, Qixing ZHOU. Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads[J]. Front Envir Sci Eng, 2012, 6(3): 360-372.
[5] Hongwei QIN, Liufang CHEN, Nan LU, Yahui ZHAO, Xing YUAN. Toxic effects of enrofloxacin on Scenedesmus obliquus[J]. Front Envir Sci Eng, 2012, 6(1): 107-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed