Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 979-987    https://doi.org/10.1007/s11783-015-0824-8
RESEARCH ARTICLE
Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application
Lina GAN1,2,Shan LEI1,Jian YU1,Hongtao MA3,Yo YAMAMOTO3,Yoshizo SUZUKI4,Guangwen XU1,*(),Zhanguo ZHANG4,*()
1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Materials Research Department, Materials Research Laboratories, Research and Development Group, Meidensha Corporation, 8-1, Osaki 2-Chome Shinagawa-ku, Tokyo 141-8565, Japan
4. National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba 305-8569, Japan
 Download: PDF(798 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Monolith SCR catalysts coated with V2O5-WO3/TiO2 were prepared by varying binder and coating thickness. Comparing with a monolith extruded with 100% V2O5-WO3/TiO2 powder, a coated monolith with a catalyst-coating layer of 260 μm in thickness exhibited the similar initial NOx reduction activity at 250°C. After 4 h abrasion (attrition) in an air stream containing 300 g·m−3 fine sands (50–100 μm) at a superficial gas velocity of 10 m·s−1, the catalyst still has the activity as a 100% molded monolith does in a 24-h activity test and it retains about 92% of its initial activity at 250°C. Estimation of the equivalent durable hours at a fly ash concentration of 1.0 g·m−3 in flue gas and a gas velocity of 5 m·s−1 demonstrated that this coated monolith catalyst is capable of resisting abrasion for 13 months without losing more than 8% of its initial activity. The result suggests the great potential of the coated monolith for application to de-NOx of flue gases with low fly ash concentrations from, such as glass and ceramics manufacturing processes.

Keywords coated monolith      low-temperature denitration      abrasion resistance      attrition     
Corresponding Author(s): Guangwen XU,Zhanguo ZHANG   
Online First Date: 16 November 2015    Issue Date: 23 November 2015
 Cite this article:   
Lina GAN,Shan LEI,Jian YU, et al. Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application[J]. Front. Environ. Sci. Eng., 2015, 9(6): 979-987.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0824-8
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/979
sample BET surface area /(m2·g−1) pore volume /(cm3·g−1) average pore diameter /nm
V-W/Ti powder 48.82 0.2028 16.61
C4 16.11 0.0802 19.92
D4 55.60 0.2940 11.08
100% molded 53.61 0.2809 20.96
Tab.1  BET surface area, pore volume and average pore diameter of the catalyst
Fig.1  Characterization of active V2O5-WO3/TiO2 powder and extruded and coated monoliths. (a) XRD pattern of V2O5-WO3/TiO2 powder, (b) TEM image of V2O5-WO3/TiO2 powder, (c) photos of blank and coated monoliths
Fig.2  Schematic diagram of the experimental setup for accelerated abrasion tests
Fig.3  Effect of binders on abrasion resistance of coating layers. (a) Weight losses of four coated monoliths A, B, C and D, (Conditions: 1 h, gas velocity 10 m·s−1, silicasand concentration 300 g·m−3), (b) photos of cross-sections of the coated monoliths A and C before and after a 5 h abrasion test. (Conditions: 5 h, gas velocity 10 m·s−1, silicasand concentration 300 g·m−3)
Fig.4  Effect of coating thickness on de-NOx activity at 250°C. (a) Monolith C with different coating thicknesses from 30 to 180 µm, (b) Monolith D with different coating thicknesses from 80 to 260 µm (NO: 400 ppm, SO2: 1000 ppm, O2: 5 vol.%, H2O: 10 vol.%, NH3/NO= 1, reaction temperature 250°C, superficial velocity 5.7 m·s−1)
Fig.5  N2 adsorption-desorption isotherms and pore size distributions of V2O5-WO3/TiO2 powder and coated monoliths C4 and D4
Fig.6  Effect of abrasion time on de-NOx activity and weight loss per hour for coated monoliths C4, D4 and 100%-molded (NO: 400 ppm, SO2: 1000 ppm, O2: 5 vol.%, H2O: 10 vol.%, NH3/NO= 1, reaction temperature 250°C, superficial velocity 5.7 m·s−1)
Fig.7  Catalytic stability of coated monoliths C4 and D4 after accumulative 4-h abrasion tests. (NO: 400 ppm, SO2: 1000 ppm, O2: 5 vol.%, H2O: 10 vol.%, NH3/NO= 1, reaction temperature 250°C, superficial velocity 5.7 m·s−1)
1 Forzatti  P. Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A, General, 2001, 222(1): 221–236
https://doi.org/10.1016/S0926-860X(01)00832-8
2 Moon  L S, Su  K S, Chang  H S. Systematic mechanism study of the high temperature SCR of NOx by NH3 over a W/TiO2 catalyst. Chemical Engineering Science, 2012, 79: 177–185
https://doi.org/10.1016/j.ces.2012.05.032
3 Liu  Z, Ihl  W S. Recent advances in catalytic deNOx science and technology. Catalysis Reviews, 2006, 48(1): 43–89
https://doi.org/10.1080/01614940500439891
4 Chen  L, Li  J, Ge  M. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. Journal of Physical Chemistry C, 2009, 113(50): 21177–21184
https://doi.org/10.1021/jp907109e
5 Klovsky  J R, Koradia  P B, Lim  C T. Evaluation of a new zeolitic catalyst for NOx reduction with NH3. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(2): 218–225
https://doi.org/10.1021/i360074a018
6 Matsumoto  S. DeNOx catalyst for automotive lean-burn engine. Catalysis Today, 1996, 29(1): 43–45
7 Krocher  O, Elsener  M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution-I. Catalytic studies. Applied Catalysis B: Environmental, 2008, 77(3−4): 215–227
https://doi.org/10.1016/j.apcatb.2007.04.021
8 Li  J, He  H, Hu  C, Zhao  J. The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science & Engineering, 2013, 7(3): 302–325
https://doi.org/10.1007/s11783-013-0511-6
9 Hao  J, He  K, Duan  L, Li  J, Wang  L. Air pollution and its control in China. Frontiers of Environmental Science & Engineering in China, 2007, 1(2): 129–142
https://doi.org/10.1007/s11783-007-0024-2
10 Willi  R, Roduit  B, Koeppel  R, Wokaun  A, Baiker  A. Selective reduction of NO by NH3 over vanadia-based commercial catalyst: Parametric sensitivity and kinetic modelling. Chemical Engineering Science, 1996, 51(11): 2897–2902
https://doi.org/10.1016/0009-2509(96)00171-6
11 Yang  J, Ma  H, Yamamoto  Y, Yu  J, Xu  G, Zhang  Z, Suzuki  Y. SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces. Chemical Engineering Journal, 2013, 230: 513–521
https://doi.org/10.1016/j.cej.2013.06.114
12 Phil  H H, Reddy  M P, Kumar  P A, Ju  L K, Hyo  J S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Applied Catalysis B: Environmental, 2008, 78(3): 301–308
https://doi.org/10.1016/j.apcatb.2007.09.012
13 Yu  J, Guo  F, Wang  Y, Zhu  J, Liu  Y, Su  F, Gao  S, Xu  G. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1): 160–168
https://doi.org/10.1016/j.apcatb.2009.12.023
14 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 17954−2007 Economical Operation of Industrial Boilers. Beijing: Standards Press of China, 2007 (in Chinese)
15 Yu  J, Guo  F, Yang  J, Wang  Y, Xu  G. A Surface Precipitated Honeycomb Denitration Catalyst and Its Preparation Method. China Patent, 2011, CN201210167211.5 (in Chinese)
16 Yu  J, Guo  F, Li  Q, Wang  Y, Dong  L, Gao  S, Xu  G. A New Denitration Catalyst Preparation Method. China Patent, 2010, CN201010537130.0 (in Chinese)
17 Su  J, Liu  Q, Liu  Z, Huang  Z. Honeycomb CuO/Al2O3/cordierite catalyst for selective catalytic reduction of NO by NH3 effect of Al2O3 coating. Industrial & Engineering Chemistry Research, 2008, 47(13): 4295–4301
https://doi.org/10.1021/ie800105p
18 Zamaro  J M, Ulla  M A, Miró  E E. The effect of different slurry compositions and solvents upon the properties of ZSM5-washcoated cordierite honeycombs for the SCR of NOx with methane. Catalysis Today, 2005, 107: 86–93
https://doi.org/10.1016/j.cattod.2005.07.066
19 García-Bordejé  E, Calvillo  L, Lazaro  M, Moliner  R. Study of configuration and coating thickness of vanadium on carbon-coated monoliths in the SCR of NO at low temperature. Industrial & Engineering Chemistry Research, 2004, 43(15): 4073–4079
https://doi.org/10.1021/ie0498854
20 Lei  Z, Wen  C, Chen  B. Optimization of internals for selective catalytic reduction (SCR) for NO removal. Environmental Science & Technology, 2011, 45(8): 3437–3444
https://doi.org/10.1021/es104156j pmid: 21381660
21 Yamamoto  S, Hikazudani  S, Hino  N, Shimizu  K. End-treating Method for Catalyst-Carrying Honeycomb Structure in Exhaust Gas Denitration System. International Patent, 2013, WO2013125137 (A1)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed