Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (5) : 8    https://doi.org/10.1007/s11783-016-0850-1
RESEARCH ARTICLE
On secondary new particle formation in China
Markku Kulmala1,*(),Tuukka Petäjä1,2,Veli-Matti Kerminen1,Joni Kujansuu1,Taina Ruuskanen1,Aijun Ding2,3,Wei Nie1,2,3,Min Hu4,Zhibin Wang4,5,Zhijun Wu4,Lin Wang6,Douglas R. Worsnop1,7
1. University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
2. Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST) Nanjing University and University of Helsinki, Nanjing 210093, China
3. Institute for Climate and Global Change Research, Nanjing University, Nanjing 210000, China
4. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
5. Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, DE 55128, Germany
6. Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
7. Aerodyne Research Inc., Billerica, MA 01821, USA
 Download: PDF(755 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1s1) in several megacities.

A holistic scientific understanding on the atmospheric phenomena associated with air quality as a whole, as well as on the connection between air quality and climate, is lacking at the moment.With a network of observation stations, we will be able to understand the interactions and feedbacks associated with the urban pollution mixture, and ultimately, are ready to make targeted strategies for the pollution control.

This paper summaries the recent advances in studying secondary new aerosol formation in China and shows how increased process-level understanding will help us to understand air quality-climate-weather interactions and how the feedbacks and interactions affect the air quality in highly-polluted environments such as those frequently encountered in Chinese megacities.

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s1) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy.

Keywords Aerosol particles      Heavily-polluted environments      Condensation sink      New particle production      Megacities     
Corresponding Author(s): Markku Kulmala   
Issue Date: 30 May 2016
 Cite this article:   
Markku Kulmala,Tuukka Petäjä,Veli-Matti Kerminen, et al. On secondary new particle formation in China[J]. Front. Environ. Sci. Eng., 2016, 10(5): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0850-1
https://academic.hep.com.cn/fese/EN/Y2016/V10/I5/8
Fig.1  A typical nucleation event measured using Air Ion Spectrometer (AIS) at the SORPES station, Nanjing, in China. The background cluster ions are seen in both negative and positive ion modes in the sub-2 nm size range. Negative ion clusters are smaller than positive ones. The new particle formation is seen in both polarities starting at around 8.30 am. Here J6 is 1.8 cm3·s1 and GR (6-30 nm) is 6.6 nm·h1.
1 IPCC. 2013. Climate Change 2013: The Physical Science Basis. Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA, 1535
2 Hand J L, Malm W C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. Journal of Geophysical Research, 2007, 112(D16): D16203
https://doi.org/10.1029/2007JD008484
3 Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569): 367–371
https://doi.org/10.1038/nature15371 pmid: 26381985
4 Kulmala M, Nieminen T, Nikandrova A, Lehtipalo K, Manninen H E, Kajos M K, Kolari P, Lauri A, Petäjä T, Krejci R, Hansson H C, Swietlicki E, Lindroth A, Christensen T R, Arneth A, Hari P, Bäck J, Vesala T, Kerminen V M. CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environmental Research, 2014, 19(Suppl. B): 122–131
5 Kulmala M, Kerminen V M. On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90(2–4): 132–150
https://doi.org/10.1016/j.atmosres.2008.01.005
6 Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M, Worsnop D R, Kerminen V M. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Review of Physical Chemistry, 2014b, 65(1): 21–37
https://doi.org/10.1146/annurev-physchem-040412-110014 pmid: 24245904
7 Zhang R, Khalizov A, Wang L, Hu M, Xu W. Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews, 2012, 112(3): 1957–2011
https://doi.org/10.1021/cr2001756 pmid: 22044487
8 Weber R J, Marti J J, McMurry P H, Eisele F L, Tanner D J, Jefferson A. Measured Atomospheric New Particle Formation Rates: Implications For Nucleation Mechanisms. Chemical Engineering Communications, 1996, 151(1): 53–64
https://doi.org/10.1080/00986449608936541
9 Kulmala M, Lehtinen K E J, Laaksonen A. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 2006, 6(3): 787–793
https://doi.org/10.5194/acp-6-787-2006
10 Kulmala M, Toivonen A, Mäkelä J, Laaksonen A. Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus. Series B, Chemical and Physical Meteorology, 1998, 50(5): 449–462
https://doi.org/10.1034/j.1600-0889.1998.t01-4-00004.x
11 Vehkamäki H, Riipinen I. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chemical Society Reviews, 2012, 41(15): 5160–5173
https://doi.org/10.1039/c2cs00002d pmid: 22710807
12 Kulmala M, Kerminen V M, Anttila T, Laaksonen A, O’Dowd C D. Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109(D4): n/a
https://doi.org/10.1029/2003JD003961
13 Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
https://doi.org/10.1126/science.1227385 pmid: 23430652
14 Kerminen V M, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis S N, Kulmala M, Petäjä T. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12(24): 12037–12059
https://doi.org/10.5194/acp-12-12037-2012
15 Guo S, Hua M, Zamorab M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molinac M J, Zhang R Y. Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 17373–17378
16 Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S H. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222
pmid: 25231863
17 Wu Z J, Hu M, Liu S, Wehner B, Bauer S, Ma ßling A, Wiedensohler A, Petäjä T, Dal Maso M, Kulmala M. New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, D, Atmospheres, 2007, 112: D09209
18 Xiao S, Wang M Y, Yao L, Kulmala M, Zhou B, Yang X, Chen J M, Wang D F, Fu Q Y, Worsnop D R, Wang L. Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15(4): 1769–1781
https://doi.org/10.5194/acp-15-1769-2015
19 Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petäjä T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4: 6634
https://doi.org/10.1038/srep06634 pmid: 25319109
20 Xie Y, Ding A, Nie W, Mao H, Qi X, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X, Virkkula A, Boy M, Xue L, Guo J, Sun J, Yang X, Kulmala M, Fu C. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research, D, Atmospheres, 2015, 120(24): 12679–12694
https://doi.org/10.1002/2015JD023607
21 Kulmala M. Atmospheric chemistry: China’s choking cocktail. Nature, 2015, 526(7574): 497–499
https://doi.org/10.1038/526497a pmid: 26490602
22 Fiore A M, Naik V, Spracklen D V, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith P J, Cionni I, Collins W J, Dalsøren S, Eyring V, Folberth G A, Ginoux P, Horowitz L W, Josse B, Lamarque J F, MacKenzie I A, Nagashima T, O’Connor F M, Righi M, Rumbold S T, Shindell D T, Skeie R B, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chemical Society Reviews, 2012, 41(19): 6663–6683
https://doi.org/10.1039/c2cs35095e pmid: 22868337
23 Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik J G, Spracklen D V, Vignati E, Wild M, Williams M, Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15(14): 8217–8299
https://doi.org/10.5194/acp-15-8217-2015
24 Hari P, Petäjä T, Bäck J, Kerminen V M, Lappalainen H K, Vihma T, Laurila T, Viisanen Y, Vesala T, Kulmala M. Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16(2): 1017–1028
https://doi.org/10.5194/acp-16-1017-2016
25 Lin P, Hu M, Wu Z, Niu Y, Zhu T. Marine aerosol size distributions in the springtime over China adjacent seas. Atmospheric Environment, 2007, 41(32): 6784–6796
https://doi.org/10.1016/j.atmosenv.2007.04.045
26 Liu S, Hu M, Wu Z J, Wehner B, Wiedensohler A, Cheng Y F. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42(25): 6275–6283
https://doi.org/10.1016/j.atmosenv.2008.01.063
27 Gong Y G, Hu M, Cheng Y, Su H, Yue D, Liu F, Wiedensohler A, Wang Z, Kalesse H, Liu S, Wu Z, Xiao K, Mi P, Zhang Y. Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China. Atmospheric Environment, 2010, 44(27): 3278–3285
https://doi.org/10.1016/j.atmosenv.2010.05.049
28 Yue D L, Hu M, Zhang R Y, Wang Z B, Zheng J, Wu Z J, Wiedensohler A, He L Y, Huang X F, Zhu T. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmospheric Chemistry and Physics, 2010, 10(10): 4953–4960
https://doi.org/10.5194/acp-10-4953-2010
29 Wu Z J, Hu M, Yue D L, Liu S, Wehner B, Wiedensohler A. Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation. Science. China Earth Sciences, 2011, 54: 1772–1778
https://doi.org/10.1007/s11430-011-4227-9
30 Yue D L, Hu M, Zhang R Y, Wu Z J, Su H, Wang Z B, Peng J F, He L Y, Huang X F, Gong Y G, Wiedensohler A. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45(33): 6070–6077
https://doi.org/10.1016/j.atmosenv.2011.07.037
31 Wang Z B, Hu M, Mogensen D, Yue D L, Zheng J, Zhang R Y, Liu Y, Yuan B, Li X, Shao M, Zhou L, Wu Z J, Wiedensohler A, Boy M. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2013a, 13(21): 11157–11167
https://doi.org/10.5194/acp-13-11157-2013
32 Yue D L, Hu M, Wang Z B, Wen M T, Guo S, Zhong L J, Wiedensohler A, Zhang Y H. Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China. Atmospheric Environment, 2013, 76: 181–188
https://doi.org/10.1016/j.atmosenv.2012.11.018
33 Peng J F, Hu M, Wang Z B, Huang X F, Kumar P, Wu Z J, Guo S, Yue D L, Shang D J, Zheng Z, He L Y. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmospheric Chemistry and Physics, 2014, 14(18): 10249–10265
https://doi.org/10.5194/acp-14-10249-2014
34 Qi X, Ding A J, Nie W, Petäjä T, Kerminen V M, Herrmann E, Xie Y N, Zheng L F, Manninen H, Aalto P, Sun J N, Xu Z N, Chi X G, Huang X, Boy M, Virkkula A, Yang X Q, Fu C B, Kulmala M. Aerosol size distribution and new particle formation in western Yangtze River Delta of China: two-year measurement at the SORPES station. Atmospheric Chemistry and Physics Discussion, 2015, 15(8): 12491–12537
https://doi.org/10.5194/acpd-15-12491-2015
35 Wehner B, Wiedensohler A, Tuch T M, Wu Z J, Hu M, Slanina J, Kiang C S. Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophysical Research Letters, 2004, 31(22): L22108
https://doi.org/10.1029/2004GL021596
36 Wang Z B, Hu M, Wu Z J, Yue D L, He L Y, Huang X F, Liu X G, Wiedensohler A. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmospheric Chemistry and Physics, 2013d, 13(20): 10159–10170
https://doi.org/10.5194/acp-13-10159-2013
37 Wang Z B, Hu M, Wu Z J, Yue D L. Research on the Formation Mechanisms of New Particles in the Atmosphere. Acta Chimica Sinica, 2013c, 71(04): 519–527
https://doi.org/10.6023/A12121062
38 Yue D L, Hu M, Wu Z J, Wang Z B, Guo S, Wehner B, Nowak A, Achtert P, Wiedensohler A, Jung J S, Kim Y J, Liu S C. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D00G12
https://doi.org/10.1029/2008JD010894
39 Wang Z B, Hu M, Yue D L, Zheng J, Zhang R Y, Wiedensohler A, Wu Z J, Nieminen T, Boy M. Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11(24): 12663–12671
https://doi.org/10.5194/acp-11-12663-2011
40 Wang Z B, Hu M, Pei X Y, Zhang R Y, Paasonen P, Zheng J, Yue D L, Wu Z J, Boy M, Wiedensohler A. Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing. Atmospheric Environment, 2015, 103: 7–17
https://doi.org/10.1016/j.atmosenv.2014.11.069
41 Kulmala M, Dal Maso M, Mäkelä J M, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O'Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus, 2001, 53B(4): 479–480
https://doi.org/10.1034/j.1600-0889.2001.d01-33.x
42 Kulmala M, Petäjä T, Mönkkönen P, Koponen I K, Dal Maso M, Aalto P P, Lehtinen K E J, Kerminen V M. On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5(2): 409–416
https://doi.org/10.5194/acp-5-409-2005
43 Wang Z B, Hu M, Sun J Y, Wu Z J, Yue D L, Shen X J, Zhang Y M, Pei X Y, Cheng Y F, Wiedensohler A. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmospheric Chemistry and Physics, 2013, 13(24): 12495–12506
https://doi.org/10.5194/acp-13-12495-2013
44 Wang Z B, Hu M, Yue D L, He L Y, Huang X F, Yang Q, Zheng J, Zhang R Y, Zhang Y H. New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China. Tellus. Series B, Chemical and Physical Meteorology, 2013, 65(1): 97–112
https://doi.org/10.3402/tellusb.v65i0.19965
45 Ding A, Fu C, Yang X, Sun J, Zheng L, Xie Y, Herrmann E, Nie W, Petäjä T, Kerminen V M, Kulmala M. Ozone and fine particle in the western Yangtze river delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013a, 13(11): 5813–5830
https://doi.org/10.5194/acp-13-5813-2013
46 Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y N, Herrmann E, Zheng L F, Nie W, Wei L W, Kulmala M. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in the eastern China. Atmospheric Chemistry and Physics, 2013b, 13(20): 10545–10554
https://doi.org/10.5194/acp-13-10545-2013
47 Dupart Y, King S M, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C. Mineral dust photochemistry induces nucleation events in the presence of SO2. Proceedings of the National Academy of Sciences, 2012,20842–20847
48 Kerminen V M, Pirjola L, Kulmala M. How significantly does coagulational scavenging limit atmospheric particle production? Journal of Geophysical Research, 2001, 106(D20): 24119–24126
https://doi.org/10.1029/2001JD000322
49 Lehtinen K E J, Dal Maso M, Kulmala M, Kerminen V M. Estimating nucleation rates from apparent particle formation rates and vice-versa: Revised formulation of the Kerminen-Kulmala equation. Journal of Aerosol Science, 2007, 38(9): 988–994
https://doi.org/10.1016/j.jaerosci.2007.06.009
50 Nie W, Ding A J, Xie Y N, Xu Z, Mao H, Kerminen V M, Zheng L F, Qi X M, Huang X, Yang X Q, Sun J N, Herrmann E, Petäjä T, Kulmala M, Fu C B. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15(3): 1147–1159
https://doi.org/10.5194/acp-15-1147-2015
51 He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, Tang G, Liu C, Zhang H, Hao J. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4: 4172
pmid: 24566871
52 Vanhanen J, Mikkilä J, Lehtipalo K, Sipilä M, Manninen H E, Siivola E, Petäjä T, Kulmala M. Particle size magnifier for nano-CN Detection. Aerosol Science and Technology, 2011, 45(4): 533–542
https://doi.org/10.1080/02786826.2010.547889
53 Kulmala M, Riipinen I, Sipilä M, Manninen H E, Petäjä T, Junninen H, Maso M D, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison R M, Hanson I, Leung C, Lehtinen K E J, Kerminen V M. Toward direct measurement of atmospheric nucleation. Science, 2007, 318(5847): 89–92
https://doi.org/10.1126/science.1144124 pmid: 17761851
54 Tammet H. Symmetric Inclined Grid Mobility Analyzer for the Measurement of Charged Clusters and Fine Nanoparticles in Atmospheric Air. Aerosol Science and Technology, 2011, 45(4): 468–479
https://doi.org/10.1080/02786826.2010.546818
55 Gagné S, Nieminen T, Kurtén T, Manninen H E, Petäjä T, Laakso L, Kerminen V M, Boy M, Kulmala M. Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10(8): 3743–3757
https://doi.org/10.5194/acp-10-3743-2010
56 Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen H E, Paasonen P, Petäjä T, Dal Maso M, Aalto P P, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Härrak U, Plaß-Dülmer C. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10(4): 1885–1898
https://doi.org/10.5194/acp-10-1885-2010
57 Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T, Kostiainen R, Rohner U, Gonin M, Fuhrer K, Kulmala M, Worsnop D R. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3(4): 1039–1053
https://doi.org/10.5194/amt-3-1039-2010
58 Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G, Hakala J, Petäjä T, Mauldin R L III, Kulmala M, Worsnop D R. Atmospheric sulfuric acid and neutral cluster measurements using CI-Api-TOF. Atmospheric Chemistry and Physics, 2012, 12(9): 4117–4125
https://doi.org/10.5194/acp-12-4117-2012
59 Petäjä T, Mauldin R L III, Kosciuch E, McGrath J, Nieminen T, Paasonen P, Boy M, Adamov A, Kotiaho T, Kulmala M. Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9(19): 7435–7448
https://doi.org/10.5194/acp-9-7435-2009
60 Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin R L 3rd, Hyvärinen A P, Lihavainen H, Kulmala M. The role of sulfuric acid in atmospheric nucleation. Science, 2010, 327(5970): 1243–1246
https://doi.org/10.1126/science.1180315 pmid: 20203046
61 Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagné S, Ickes L, Kürten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan R C, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy E R, Makhmutov V, Mathot S, Mikkilä J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petäjä T, Schnitzhofer R, Seinfeld J H, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Vanhanen J, Viisanen Y, Vrtala A, Wagner P E, Walther H, Weingartner E, Wex H, Winkler P M, Carslaw K S, Worsnop D R, Baltensperger U, Kulmala M. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476(7361): 429–433
https://doi.org/10.1038/nature10343 pmid: 21866156
62 Almeida J, Schobesberger S, Kürten A, Ortega I K, Kupiainen-Määttä O, Praplan A P, Adamov A, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Donahue N M, Downard A, Dunne E, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Guida R, Hakala J, Hansel A, Heinritzi M, Henschel H, Jokinen T, Junninen H, Kajos M, Kangasluoma J, Keskinen H, Kupc A, Kurtén T, Kvashin A N, Laaksonen A, Lehtipalo K, Leiminger M, Leppä J, Loukonen V, Makhmutov V, Mathot S, McGrath M J, Nieminen T, Olenius T, Onnela A, Petäjä T, Riccobono F, Riipinen I, Rissanen M, Rondo L, Ruuskanen T, Santos F D, Sarnela N, Schallhart S, Schnitzhofer R, Seinfeld J H, Simon M, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Tröstl J, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Virtanen A, Vrtala A, Wagner P E, Weingartner E, Wex H, Williamson C, Wimmer D, Ye P, Yli-Juuti T, Carslaw K S, Kulmala M, Curtius J, Baltensperger U, Worsnop D R, Vehkamäki H, Kirkby J. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature, 2013, 502(7471): 359–363
https://doi.org/10.1038/nature12663 pmid: 24097350
63 Petäjä T, Sipilä M, Paasonen P, Nieminen T, Kurtén T, Ortega I K, Stratmann F, Vehkamäki H, Berndt T, Kulmala M. Experimental observation of strongly bound dimers of sulfuric acid: application to nucleation in the atmosphere. Physical Review Letters, 2011, 106(22): 228302
https://doi.org/10.1103/PhysRevLett.106.228302 pmid: 21702637
64 Ehn M, Thornton J A, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen L B, Jørgensen S, Kjaergaard H G, Canagaratna M, Maso M D, Berndt T, Petäjä T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F. A large source of low-volatility secondary organic aerosol. Nature, 2014, 506(7489): 476–479
https://doi.org/10.1038/nature13032 pmid: 24572423
65 Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipilä M, Spracklen D V, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 2014, 344(6185): 717–721
https://doi.org/10.1126/science.1243527 pmid: 24833386
66 Mauldin R L 3rd, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminen V M, Kulmala M. A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488(7410): 193–196
https://doi.org/10.1038/nature11278 pmid: 22874964
67 Taipale R, Sarnela N, Rissanen M, Junninen H, Rantala P, Korhonen F, Siivola E, Berndt T, Kulmala M, Mauldin III R L, Petäjä T, Sipilä M.New instrument for measuring atmospheric concetrations of non-OH oxidants of SO2. Boreal Environment Research, 2014,19(B), 55–70
68 Mauldin R L III, Rissanen M P, Petäjä T, Kulmala M. Furthering information from OH and HO2+RO2 observations using a high resolution time of flight mass spectrometer. Atmospheric Measurement Techniques, 2016 doi:10.5194/amt-2015-398
69 Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa A M, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J A, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S G, O’Dowd C D, Marinoni A, Horn H G, Keck L, Jiang J, Scheckman J, McMurry P H, Deng Z, Zhao C S, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5(3): 657–685
https://doi.org/10.5194/amt-5-657-2012
70 Hennessy S, Murphy P. The Potential for Collaborative Problem Solving in Design and Technology. International Journal of Technology and Design Education, 1999, 9(1): 1–36
https://doi.org/10.1023/A:1008855526312
71 Nordic Climate Change Research 2009. NordForsk Policy Briefs 2009–8. Mandag Morgen, 2009
72 Hari P, Kulmala M.Station for Measuring Ecosystem – Atmosphere Relations (SMEAR II). Environmental Research, 2005, 10(5): 315–322
73 Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land- atmosphere- ocean- society continuum in the Northern Eurasian region. Atmospheric Chemistry and Physics- PEEX Special Issue, 2016
74 Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land- atmosphere- ocean- society continuum in the Northern Eurasian region. Atmospheric Physic and Chemistry Dissussions (in review)
75 Tang D, Wang C, Nie J, Chen R, Niu Q, Kan H, Chen B, Perera F. Health benefits of improving air quality in Taiyuan, China. Environment International, 2014, 73: 235–242
https://doi.org/10.1016/j.envint.2014.07.016 pmid: 25168129
76 Haines A, McMichael A J, Smith K R, Roberts I, Woodcock J, Markandya A, Armstrong B G, Campbell-Lendrum D, Dangour A D, Davies M, Bruce N, Tonne C, Barrett M, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet, 2009, 374(9707): 2104–2114
https://doi.org/10.1016/S0140-6736(09)61759-1 pmid: 19942281
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed