Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (6) : 5    https://doi.org/10.1007/s11783-016-0872-8
RESEARCH ARTICLE
Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions
Linxia Yan,Senlin Tian(),Jian Zhou,Xin Yuan
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
 Download: PDF(482 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

? The Cu–Ni/γ-Al2O3 catalyst was prepared to study HCN hydrolysis

? On catalyst calcined at 400°C, the HCN removal efficiency reaches a maximum.

? HCN removal is the highest at 480 min at a H 2 O/HCN volume ratio of 150

? The presence of CO facilitates HCN hydrolysis and increases NH 3 production.

? O 2 increases the HCN removal and NOx production but decreases NH 3 production

GRAPHIC ABSTRACT

To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallic-based Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NOx production but decreases NH3 production.

Keywords Hydrogen cyanide      Cu–Ni/g-Al2O3      Catalytic hydrolysis     
PACS:     
Fund: 
Corresponding Author(s): Senlin Tian   
Issue Date: 20 September 2016
 Cite this article:   
Linxia Yan,Senlin Tian,Jian Zhou, et al. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions[J]. Front. Environ. Sci. Eng., 2016, 10(6): 5.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0872-8
https://academic.hep.com.cn/fese/EN/Y2016/V10/I6/5
Fig.1  Experimental apparatus for the catalytic testing

One steel gas cylinder 2 reducing valve 3 mass flow meter

Four saturated water generator 5 mixing tank 6 electric heating jacket

Seven flat-jaw pinchcock 8 tubular resistance furnace 9 quartz tube reactor

Ten three-way valve 11 porous glass bottle

Fig.2  HCN removal efficiencies at different calcination temperatures. Reaction conditions: reaction temperature: 200℃; H2O/HCN volume ratio: 100; GHSV: 36000 h-1
Fig.3  XRD patterns of Cu–Ni/g-Al2O3 catalysts calcined at (a) 300, (b) 400, (c) 500, and (d) 600℃ for 5 h
Fig.4  HCN removal efficiencies at different H2O/HCN volume ratios. Reaction conditions: reaction temperature: 200℃; calcination temperature: 400℃; GHSV: 36000 h-1
Fig.5  HCN removal efficiencies at different reaction temperatures. Reaction conditions: calcination temperature: 400℃; H2O/HCN volume ratio: 150; GHSV: 36000 h-1
Fig.6  HCN removal efficiencies in the presence of CO or O2. Reaction conditions: calcination temperature: 400℃; reaction temperature: 200℃; H2O/HCN volume ratio: 150; GHSV: 36000 h-1
Fig.7  Outlet concentrations of HCN, NH3, and NOx at different reaction temperatures under (a) a N2 atmosphere, (b) an O2 atmosphere, and (c) a CO atmosphere
1 Duquesne S, Bars M L, Bourbigot S, Delobel R, Poutch F, Camino G, Eling B, Lindsay C, Roels T. Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. Journal of Fire Sciences, 2000, 18(6): 456–482
https://doi.org/10.1106/6CRG-Q8VD-PV3G-ELDD
2 Dagaut P, Glarborg P, Alzueta M U. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 2008, 34(1): 1–46
https://doi.org/10.1016/j.pecs.2007.02.004
3 Tuovinen H, Blomqvist P, Saric F. Modelling of hydrogen cyanide formation in room fires. Fire Safety Journal, 2004, 39(8): 737–755
https://doi.org/10.1016/j.firesaf.2004.07.003
4 Karlsson H L. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Science of the Total Environment, 2004, 334-335: 125–132
https://doi.org/10.1016/j.scitotenv.2004.04.061 pmid: 15504498
5 Yuan S, Zhou Z J, Li J, Chen X L, Wang F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis. Energy & Fuels, 2010, 24(11): 6166–6171
https://doi.org/10.1021/ef100959g
6 Wang Z H, Jiang M, Ning P, Xie G. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194–12202
https://doi.org/10.1021/ie200419a
7 Jiang M, Wang Z H, Ning P, Tian S L, Huang X F, Bai Y W, Shi Y, Ren X G, Chen W, Qin Y S, Zhou J, Miao R R. Dust removal and purification of calcium carbide furnace off-gas. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901–907
https://doi.org/10.1016/j.jtice.2013.08.008
8 Zhang F M, Li K X, Lu C X, Lu Y G, Yang Y G, Ling L C. Removal methods of hydrogen cyanide. New Carbon Materials, 2003, 18(2): 151–157
9 Jiang M, Ning P, Wang C H, Chen W, Zhou J, Wang L, Qin Y S. Research progress of HCN-containing exhaust gas treatment. Chemical Industry and Engineering Progress, 2012, 31(11): 2563–2569
10 Ning P, Jiang M, Wang X Q, Yang H, Shi Y, Bo Y W. Adsorption of low-concentration HCN on impregnated activated carbon. Journal of Chemical Engineering of Chinese Universities, 2010, 24(6): 1038–1045
11 Ye P W, Luan Z Q, Li K, Yu L Q, Zhang J C. The use of a combination of activated carbon and nickel microfibers in the removal of hydrogen cyanide from air. Carbon, 2009, 47(7): 1799–1805
https://doi.org/10.1016/j.carbon.2009.02.031
12 Ning P, Qiu J, Wang X, Liu W, Chen W. Metal loaded zeolite adsorbents for hydrogen cyanide removal. Journal of Environmental Sciences (China), 2013, 25(4): 808–814
https://doi.org/10.1016/S1001-0742(12)60138-7 pmid: 23923791
13 Colín G M, Ortega G F, Ramos B S, Negron M A. Heterogeneous radiolysis of HCN adsorbed on a solid surface. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619(1): 83–85
https://doi.org/10.1016/j.nima.2009.10.074
14 Tan H Z, Wang X B, Wang C L, Xu T M. Characteristics of HCN removal using CaO at high temperatures. Energy & Fuels, 2009, 23(3): 1545–1550
https://doi.org/10.1021/ef800935u
15 Zhao H B, Tonkyn R G, Barlow S E, Koel B E, Peden C H F. Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst. Applied Catalysis B: Environmental, 2006, 65(3): 282–290
https://doi.org/10.1016/j.apcatb.2006.02.009
16 Giménez-López J, Miller A, Bilbao R, Alzueta M U. HCN oxidation in an O2/CO2 atmosphere: an experimental and kinetic modeling study. Combustion and Flame, 2010, 157(2): 267–276
https://doi.org/10.1016/j.combustflame.2009.07.016
17 Marsh J D F, Newling W B S, Rich J. The catalytic hydrolysis of hydrogen cyanide to ammonia. Journal of Applied Chemistry, 1952, 2(12): 681–684
https://doi.org/10.1002/jctb.5010021202
18 Nanba T, Obuchi A, Akaratiwa S, Liu S, Uchisawa J, Kushiyama S. Catalytic hydrolysis of HCN over H-ferrierite. Chemistry Letters, 2000, 29(9): 986–987
https://doi.org/10.1246/cl.2000.986
19 Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part II: Heterogeneous reactions involving limestone. Fuel, 2012, 81(13): 1641–1646
https://doi.org/10.1016/S0016-2361(02)00096-0
20 Kröcher O, Elsener M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts. Applied Catalysis B: Environmental, 2009, 92(1–2): 75–89
https://doi.org/10.1016/j.apcatb.2009.07.021
21 Yuan X, Zhou J, Tian S L. Effects of transition metals grafted gamma-Al2O3 on catalytic hydrolysis of HCN. Research of Environmental Sciences, 2014, 27(12): 1465–1471
22 Gayán P, Dueso C, Abad A, Adanez J, Diego L F. NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods. Fuel, 2009, 88(6): 1016–1023
https://doi.org/10.1016/j.fuel.2008.12.007
23 Gayán P, Diego L F, García-Labiano F. Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel, 2008, 87(12): 2641–2650
https://doi.org/10.1016/j.fuel.2008.02.016
24 HJ 484–2009, Water quality-determination of cyanid-volumetric and spectro-photometry method
25 Rida K, Benabbas A, Bouremmad F, Peña M A, Sastre E, Martínez-Arias A. Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite. Applied Catalysis A, General, 2007, 327(2): 173–179
https://doi.org/10.1016/j.apcata.2007.05.015
26 Cheng W, Xu J, Ding W, Wang Y, Zheng W, Wu F, Li J. Synthesis of porous super paramagnetic iron oxides from colloidal nanoparticles: effect of calcination temperature and atmosphere. Materials Chemistry and Physics, 2015, 153: 187–194
https://doi.org/10.1016/j.matchemphys.2015.01.002
27 Das T, Sengupta S, Deo G. Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 147–162
https://doi.org/10.1007/s11144-013-0592-z
28 Zhang N W, Huang C J, Zhu X Q, Xu J D, Weng W Z, Wan H L. Effect of calcination temperature and pretreatment with reaction gas on properties of Co/g-Al2O3 catalysts for partial oxidation of methane. Chemistry, an Asian Journal, 2012, 7(8): 1895–1901
https://doi.org/10.1002/asia.201200180 pmid: 22588989
29 Jung J S, Lee J S, Choi G, Ramesh S, Moon D J. The characterization of micro-structure of cobalt on g-Al2O3 for FTS: effects of pretreatment on Ru-Co/g-Al2O3. Fuel, 2015, 149: 118–129
https://doi.org/10.1016/j.fuel.2014.09.001
30 Wang J H, Dong X D, Wang Y J, Li Y. Effect of the calcination temperature on the performance of a CeMoOx. Catalysis Today, 2015, 245: 10–15
https://doi.org/10.1016/j.cattod.2014.07.035
31 Zhu J, Wang W, Hua X N, Xia Z, Deng Z. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1117–1129
https://doi.org/10.1007/s11783-015-0812-z
32 Ko E Y, Park E D, Seo K W, Lee H C, Lee D, Kim S. Pt-Ni/g-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream. Catalysis Letters, 2006, 110(3–4): 275–279
https://doi.org/10.1007/s10562-006-0121-z
33 Yang X C, Lu Z G, Kang X C, Wei Y N. Effect of ZrO2 on the structure of NiO/CeO2/g-Al2O3 composite catalysts. Journal of Inorganic Materials, 2009, 24(1): 187–191
https://doi.org/10.3724/SP.J.1077.2009.00187
34 Kröcher O, Elsener M, Jacob E. A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas. Applied Catalysis B: Environmental, 2009, 88(1–2): 66–82
https://doi.org/10.1016/j.apcatb.2008.09.027
[1] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[2] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
[3] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
[4] Mingkai Zhang, He Jing, Yanchen Liu, Hanchang Shi. Estimation and optimization operation in dealing with inflow and infiltration of a hybrid sewerage system in limited infrastructure facility data[J]. Front. Environ. Sci. Eng., 2017, 11(2): 7-.
[5] Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application[J]. Front. Environ. Sci. Eng., 2017, 11(1): 4-.
[6] Jiuxiao Hao, Xiujin Wang, Hui Wang. Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate[J]. Front. Environ. Sci. Eng., 2017, 11(1): 5-.
[7] Si-Yu Zhang, Paul N. Williams, Jinming Luo, Yong-Guan Zhu. Microbial mediated arsenic biotransformation in wetlands[J]. Front. Environ. Sci. Eng., 2017, 11(1): 1-.
[8] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[9] Yang Li, Lei Shi, Yi Qian, Jie Tang. Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective[J]. Front. Environ. Sci. Eng., 2017, 11(1): 11-.
[10] Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu. Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry[J]. Front. Environ. Sci. Eng., 2017, 11(1): 14-.
[11] Chunhao Dai, Pufeng Qin, Zhangwei Wang, Jian Chen, Xianshan Zhang, Si Luo. Mercury enrichment in Brassica napus in response to elevated atmospheric mercury concentrations[J]. Front. Environ. Sci. Eng., 2017, 11(1): 2-.
[12] Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9-.
[13] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[14] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[15] Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu. Impact of roxarsone on the UASB reactor performance and its degradation[J]. Front. Environ. Sci. Eng., 2016, 10(6): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed