Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 4    https://doi.org/10.1007/s11783-017-0926-6
RESEARCH ARTICLE
Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts
Quanming Liang1, Jian Li1,2(), Hong He1,2(), Wenjun Liang1,2, Tiejun Zhang1, Xing Fan1
1. Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
2. Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
 Download: PDF(622 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CeO2 improved the De-NOx activity and sulfur resistance of catalysts.

The De-NOx activity of 3% CeO2 -VWT catalyst reached 89.9 % at 140°C.

CeO2 promoted the oxidation of NO to NO2 and inspired the fast SCR reaction.

Active components content and BET decreased slightly after entering SO2.

The largest loss rate was 0.024%/°C at 380°C–390°C in poisoned catalyst.

The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had been investigated. CeO2 helped to improve the De-NOx activity and sulfur resistance. The optimal loading of CeO2 was 3% with the De-NOx efficiency reached 89.9% at 140°C. The results showed that the De-NOx activity of 3% CeO2-VWT catalysts by one-step method was the same as two-step method basically and reached the level of industrial applications, the N2 selectivity of catalysts was more than 99.2% between 110°C and 320°C. In addition, CeO2 promoted the oxidation of NO to NO2, which adsorbed on the Lewis acid site (V5+═O) to form V5+═NO3 and inspired the fast SCR reaction. Not only the thermal stability but also the De-NOx activity of catalysts decreased with excess CeO2 competed with V2O5. Characterizations of catalysts were carried out by XRF, BET, XRD, TG and FT-IR. BET showed that the specific surface area of catalysts decreased with the loading of CeO2 increased, the active components content and specific surface area of catalysts decreased slightly after entering SO2. Ammonium sulfate species were formed in poisoned catalyst which had been investigated by XRF, BET, TG and FT-IR. The largest loss rate of weight fraction was 0.024%·°C1 at 380°C–390°C, which was in accordance with the decomposition temperature of NH4HSO4 and (NH4)2SO4.

Keywords Low temperature SCR      De-NOx activity      Sulfur resistance      Ammonium sulfate     
Corresponding Author(s): Jian Li,Hong He   
Issue Date: 13 April 2017
 Cite this article:   
Quanming Liang,Jian Li,Hong He, et al. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front. Environ. Sci. Eng., 2017, 11(4): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0926-6
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/4
Fig.1  De-NOx activity of CeO2-VWT catalysts: (a) CeO2-VWT catalysts by one-step, (b) 3% CeO2-VWT catalysts by one-step and two-step, (c) effects of 300 ppm SO2 at 180℃

Reaction conditions: [NH3] = [NO] = 700 ppm, [SO2] = 300 ppm(when needed), [O2] = 5%, N2 balance, GHSV= 27000 h1

Tab.1  Trend lines about effects of SO2 on De-NOx activity of CeO2-VWT catalysts at 180℃
Tab.2  The components of CeO2-VWT catalysts by X-ray fluorescence patterns
Tab.3  Specific surface area of CeO2-VWT catalysts
Fig.2  Characterization analysis of CeO2-VWT catalysts: (a) X-ray diffraction patterns: (1) 0% CeO2-VWT, (2) 1% CeO2-VWT, (3) 2% CeO2-VWT, (4) 3% CeO2-VWT, (5) 4% CeO2-VWT, (6) 7% CeO2-VWT, (7) 0% CeO2-VWT-SO2, (8) 3% CeO2-VWT-SO2; (b) FT-IR spectra: (1) 3% CeO2-VWT, (2) 3% CeO2-VWT-SO2
Fig.3  The circulation system between active components and activated oxygen in catalysts
Tab.4  The weight loss fraction of CeO2-VWT catalysts at different stages
Fig.4  TG analysis of CeO2-VWT catalysts: (1) 0% CeO2-VWT, (2) 3% CeO2-VWT, (3) 7% CeO2-VWT, (4) 3% CeO2-VWT-SO2, (5) the weight fraction loss rate of 0% CeO2-VWT catalyst, (6) the weight fraction loss rate of 3% CeO2-VWT catalyst, (7) the weight fraction loss rate of 7% CeO2-VWT catalyst, (8) the weight fraction loss rate of 3% CeO2-VWT-SO2 catalyst
1 Busca G, Lietti  L, Ramis G ,  Berti F . Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Applied Catalysis B: Environmental, 1998, 18(1–2): 1–36
https://doi.org/10.1016/S0926-3373(98)00040-X
2 Shan W P, Song  H. Catalysts for the selective catalytic reduction of with NOxNH3 at low temperature. Catalysis Science & Technology, 2015, 5(9): 4280–4288
https://doi.org/10.1039/C5CY00737B
3 Smirniotis P G ,  Peña D A ,  Uphade B S . Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr and Cu oxides supported on hombikat TiO2. Angewandte Chemie International Edition, 2001, 40(13): 2479–2482
https://doi.org/10.1002/1521-3773(20010702)40:13<2479::AID-ANIE2479>3.0.CO;2-7 pmid: 11443671
4 Song L Y, Chao  J D, Fang  Y J, He  H, Li J ,  Qiu W G ,  Zhang G Z . Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction. Chemical Engineering Journal, 2016, 303: 275–281
https://doi.org/10.1016/j.cej.2016.05.124
5 Xu W Q, He  H, Yu Y B . Deactivation of a Ce/TiO2 Catalyst by SO2 in the Selective Catalytic Reduction of NO by NH3. Journal of Physical Chemistry C, 2009, 113(11): 4426–4432
https://doi.org/10.1021/jp8088148
6 Gu T T, Liu  Y, Weng X L ,  Wang H Q ,  Wu Z B . The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catalysis Communications, 2010, 12(4): 310–313
https://doi.org/10.1016/j.catcom.2010.10.003
7 Li Q, Hou  X X, Yang  H S, Ma  Z X, Zheng  J W, Liu  F, Zhang X B ,  Yuan Z Y . Promotional effect of CeOx for NO reduction over V2O5/TiO2-carbon nanotube composites. Journal of Molecular Catalysis A Chemical, 2012, 356: 121–127
https://doi.org/10.1016/j.molcata.2012.01.004
8 Zhang Y P, Guo  W Q, Wang  L F, Song  M, Yang L J ,  Shen K, Xu  H T, Zhou  C C. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx. Chinese Journal of Catalysis, 2015, 36(10): 1701–1710
https://doi.org/10.1016/S1872-2067(14)60916-0
9 Lee K J, Kumar  P A, Maqbool  M S, Rao  K N, Song  K H, Ha  H P. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: physico-chemical properties and catalytic activity. Applied Catalysis B: Environmental, 2013, 142–143(10): 705–717
https://doi.org/10.1016/j.apcatb.2013.05.071
10 Yang S J, Guo  Y F, Chang  H Z, Ma  L, Peng Y ,  Qu Z, Yan  N Q, Wang  C Z, Li  J H. Novel effect of SO2 on the SCR reaction over CeO2: mechanism and significance. Applied Catalysis B: Environmental, 2013, 136–137(12): 19–28
https://doi.org/10.1016/j.apcatb.2013.01.028
11 Kamata H, Ohara  H, Takahashi K ,  Yukimura A ,  Seo Y. SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catalysis Letters, 2001, 73(1): 79–83
https://doi.org/10.1023/A:1009065030750
12 Huang Z G, Zhu  Z P, Liu  Z Y, Liu  Q Y. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. Journal of Catalysis, 2003, 214(2): 213–219
https://doi.org/10.1016/S0021-9517(02)00157-4
13 Notoya F, Su  C, Sasaoka E ,  Nojima S . Effect of SO2 on the low-temperature selective catalytic reduction of nitric oxide with ammonia over TiO2, ZrO2, and Al2O3. Industrial & Engineering Chemistry Research, 2001, 40(17): 3732–3739
https://doi.org/10.1021/ie000972f
14 Soh B W, Nam  I S. Effect of support morphology on the sulfur tolerance of V2O5/Al2O3 catalyst for the reduction of NO by NH3. Industrial & Engineering Chemistry Research, 2003, 42(13): 2975–2986
https://doi.org/10.1021/ie020861b
15 Uddin M A, Shimizu  K, Ishibe K ,  Sasaoka E . Characteristics of the low temperature SCR of NOx with NH3 over TiO2. Journal of Molecular Catalysis A Chemical, 2009, 309(1–2): 178–183
https://doi.org/10.1016/j.molcata.2009.06.002
16 Song L Y, Zhan  Z C, Liu  X J, He  H, Qiu W G ,  Zi X H . NOx selective catalytic reduction by ammonia over Cu-ETS-10. Chinese Journal of Catalysis, 2014, 35(7): 1030–1035
https://doi.org/10.1016/S1872-2067(14)60035-8
17 Shan W P, Liu  F D, He  H, Shi X Y ,  Zhang C B . A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2012, 115(4): 100–106
https://doi.org/10.1016/j.apcatb.2011.12.019
18 Tronconi E, Nova  I, Ciardelli C ,  Chatterjee D ,  Weibel M . Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of  NOx  over a V-based catalyst investigated by dynamic methods. Journal of Catalysis, 2007, 245(1): 1–10
https://doi.org/10.1016/j.jcat.2006.09.012
19 Koebel M, Madia  G, Raimondi F ,  Wokaun A . Enhanced reoxidation of vanadia by NO2 in the fast SCR reaction. Journal of Catalysis, 2002, 209(1): 159–165
https://doi.org/10.1006/jcat.2002.3624
20 Madia G, Koebel  M, Elsener M ,  Wokaun A . Side reactions in the selective catalytic reduction of NOx with Various NO2 Fractions. Industrial & Engineering Chemistry Research, 2002, 41(16): 4008–4015
https://doi.org/10.1021/ie020054c
21 Zhang L, Li  L L, Cao  Y, Yao X J ,  Ge C Y ,  Gao F, Yu  D, Tang C J ,  Dong L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2015, 165(18): 589–598
https://doi.org/10.1016/j.apcatb.2014.10.029
22 Chen L, Li  J H, Ge M F . DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3. Environmental Science & Technology, 2010, 44(24): 9590–9596
https://doi.org/10.1021/es102692b pmid: 21087047
23 Peng Y, Wang  C Z, Li  J H. Structure–activity relationship of VOx/CeO2 nanorod for NO removal with ammonia. Applied Catalysis B: Environmental, 2014, 144: 538–546
https://doi.org/10.1016/j.apcatb.2013.07.059
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed