Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 17    https://doi.org/10.1007/s11783-017-0983-x
SHORT COMMUNICATION
A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater
Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang(), Xia Huang
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(306 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An electrochemical reactor with connected anode and cathode was designed.

Phosphate and ammonia were concentrated 4~5 times continuously and selectively.

Concentration differences between chambers were utilized to control the separation.

Long-term operation with struvite formation was proved to be repeatable.

To separate and concentrate NH4+ and PO43 from the synthetic wastewater to the concentrated solution through a novel electrochemical reactor with circulated anode and cathode using the difference of the concentration between electrode chamber and middle chamber.

In recent years, the research on electrochemical processes have been focused on phosphate and ammonium removal and recovery. Among the wide range of possibilities with regards to electrochemical processes, capacitive deionization (CDI) saves the most energy while at the same time does not have continuity and selectivity. In this study, a new electrochemical reactor with electrolyte cyclic flowing in the electrode chambers was constructed to separate and concentrate phosphate and ammonium continuously and selectively from wastewater, based on the principle of CDI. At the concentration ratio of NaCl solution between the electrode chambers and the middle chamber (r) of 25 to 1, phosphate and ammonium in concentration level of domestic wastewater can be removed and recovered continuously and selectively as struvite. Long-term operation also indicated the ability to continuously repeat the reaction and verified sustained stability. Further, the selective recovery at the certain r could also be available to similar technologies for recovering other kinds of substances.

Keywords Nutrients recovery      Electrochemical reactor      Electrolyte cyclic flowing      Concentration ratio      Struvite     
Corresponding Author(s): Peng Liang,Xia Huang   
Issue Date: 03 August 2017
 Cite this article:   
Shiting Ren,Mengchen Li,Jianyu Sun, et al. A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(4): 17.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0983-x
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/17
Fig.1  (a) Schematic diagram of the laboratory-scale phosphate and ammonia recovery system based on electrochemical reactor. (b) The principle of separating and concentrating NH4+ and PO43 from the synthetic wastewater (SW) to the concentrated solution (CS) using the difference of the concentration between electrode chamber and middle chamber.
Fig.2  The changing curves of (a) electrical conductivity at pre-test; (b) concentration of phosphate and ammonia at pre-test; (c) electrical conductivity at final test; (d) average current at fianl test according to different rem.
Fig.3  (a) The phosphate and ammonia concentrating curves in 10 days; (b) The phosphate and ammonia recovery curves in a long-term operation.
1 Stamberg J B, Bishop D F. Removal of nitrogen and phosphorus from waste waters: US, US 3617540 A. 1971
2 Elser J J, Marzolf E R, Goldman C R. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47(7): 1468–1477
https://doi.org/10.1139/f90-165
3 Hao X, Wang C, van Loosdrecht M C, Hu Y. Looking beyond struvite for P-recovery. Environmental Science & Technology, 2013, 47(10): 4965–4966
https://doi.org/10.1021/es401140s pmid: 23574456
4 Cisse L, Mrabet T. World phosphate production: Overview and prospects. Phosphorus Research Bulletin, 2004, 15: 21–25
https://doi.org/10.3363/prb1992.15.0_21
5 Vuuren D P V, Bouwman A F, Beusen A H W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 2010, 20(3): 428–439
https://doi.org/10.1016/j.gloenvcha.2010.04.004
6 Cordell D, Rosemarin A, Schröder J J, Smit A L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 2011, 84(6): 747–758
https://doi.org/10.1016/j.chemosphere.2011.02.032 pmid: 21414650
7 Morse G K, Brett S W, Guy J A, Lester J. Review: Phosphorus removal and recovery technologies. Science of the Total Environment, 1998, 212(1): 69–81
https://doi.org/10.1016/S0048-9697(97)00332-X pmid: 9496665
8 Lind B B, Ban Z, Bydén S. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology, 2000, 73(2): 169–174
https://doi.org/10.1016/S0960-8524(99)90157-8
9 Corre K S L, Valsamijones E, Hobbs P. Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science and Technology, 2009, 39(6): 433–477
https://doi.org/10.1080/10643380701640573
10 Batstone D J. Technologies to recover nutrients from waste streams: A critical review. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 385–427
https://doi.org/10.1080/10643389.2013.866621
11 Batstone D J, Hülsen T, Mehta C M, Keller J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 2015, 140: 2–11
https://doi.org/10.1016/j.chemosphere.2014.10.021 pmid: 25455679
12 Regy S, Mangin D, Klein J P, Lieto J. Phosphate recovery by struvite precipitation in a stirred reactor. Rep., Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Centre Européen d’Etudes des Polyphosphates, Brussels, Belgium, 2001
13 Battistoni P, Boccadoro R, Fatone F, Pavan P. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environmental Technology, 2005, 26(9): 975–982
https://doi.org/10.1080/09593332608618486 pmid: 16196406
14 Stratful I, Scrimshaw M D, Lester J N. Removal of struvite to prevent problems associated with its accumulation in wastewater treatment works. Water Environment Research: A Research Publication of the Water Environment Federation, 2004, 76(5):437–443
15 Ueno Y, Fujii M. Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology, 2001, 22(11): 1373–1381
https://doi.org/10.1080/09593332208618196 pmid: 11804359
16 Huang H, Zhang P, Zhang Z, Liu J, Xiao J, Gao F. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. Journal of Cleaner Production, 2016, 127: 302–310
https://doi.org/10.1016/j.jclepro.2016.04.002
17 Zhang Y, Desmidt E, Van Looveren A, Pinoy L, Meesschaert B, Van der Bruggen B. Phosphate separation and recovery from wastewater by novel electrodialysis. Environmental Science and Technology, 2013, 47(11): 5888–5895
https://doi.org/10.1021/es4004476 pmid: 23651001
18 Rittmann B E, Mayer B, Westerhoff P, Edwards M. Capturing the lost phosphorus. Chemosphere, 2011, 84(6): 846–853
https://doi.org/10.1016/j.chemosphere.2011.02.001 pmid: 21377188
19 Wimalasiri Y, Mossad M, Zou L. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination, 2015, 357: 178–188
https://doi.org/10.1016/j.desal.2014.11.015
20 Huang Y H, Chen T C, Hsu S F, Huang Y H, Chuang S H. Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 2014, 52(4–6): 759–765
https://doi.org/10.1080/19443994.2013.826331
21 Porada S, Zhao R, Wal A V D. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 2013, 58(8): 1388–1442
https://doi.org/10.1016/j.pmatsci.2013.03.005
22 Luo H, Xu P, Ren Z. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresource Technology, 2012, 120(120): 187–193
https://doi.org/10.1016/j.biortech.2012.06.054 pmid: 22797084
23 Długołęcki P, van der Wal A. Energy recovery in membrane capacitive deionization. Environmental Science and Technology, 2013, 47(9): 4904–4910
https://doi.org/10.1021/es3053202 pmid: 23477563
24 Nativ P, Badash Y, Gendel Y. New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications, 2017, 76: 24–28
https://doi.org/10.1016/j.elecom.2017.01.008
25 Alatraktchi A Z, Zhang Y, Angelidaki I. Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Applied Energy, 2014, 116(3): 216–222
https://doi.org/10.1016/j.apenergy.2013.11.058
[1] FSE-17079-OF-RST_suppl_1 Download
[1] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[2] Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed