Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 12    https://doi.org/10.1007/s11783-018-1073-4
RESEARCH ARTICLE
Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions
Mothe Gopi Kiran1, Kannan Pakshirajan1,2(), Gopal Das1,3
1. Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
2. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
3. Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
 Download: PDF(606 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An-RBC reactor is highly suited to treat metallic wastewater.

Metal removal is due to sulfide precipitation via sulfate reduction by SRB.

Cu(II) removal was the best among the different heavy metals.

Maximum metal removal is achieved at low metal loading condition.

Metal removal matched well with the solubility product values of respective metal sulfide salts.

This study was aimed at investigating the performance of anaerobic rotating biological contactor reactor treating synthetic wastewater containing a mixture of heavy metals under sulfate reducing condition. Statistically valid factorial design of experiments was carried out to understand the dynamics of metal removal using this bioreactor system. Copper removal was maximum (>98%), followed by other heavy metals at their respective low inlet concentrations. Metal loading rates less than 3.7 mg/L?h in case of Cu(II); less than 1.69 mg/L?h for Ni(II), Pb(II), Zn(II), Fe(III) and Cd(II) are favorable to the performance of the An-RBC reactor. Removal efficiency of the heavy metals from mixture depended on the metal species and their inlet loading concentrations. Analysis of metal precipitates formed in the sulfidogenic bioreactor by field emission scanning electron microscopy along with energy dispersive X-ray spectroscopy (FESEM-EDX) confirmed metal sulfide precipitation by SRB. All these results clearly revealed that the attached growth biofilm bioreactor is well suited for heavy metal removal from complex mixture.

Keywords Factorial design analysis      sulfate reducing bacteria      multi-metal solution      heavy metal removal      anaerobic rotating biological contactor reactor      high metal loading.     
Corresponding Author(s): Kannan Pakshirajan   
Issue Date: 09 August 2018
 Cite this article:   
Mothe Gopi Kiran,Kannan Pakshirajan,Gopal Das. Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1073-4
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/12
Fig.1  (a) Schematic of the An-RBC reactor; (b) photograph of experimental setup showing the An-RBC reactor with the immobilized SRB on its discs
Experimental runs Cd Cu Ni Fe Pb Zn
1 90 175 90 50 90 50
2 50 175 90 50 50 50
3 50 100 90 50 90 75
4 50 100 90 90 90 50
5 50 100 50 50 50 50
6 50 175 50 90 90 50
7 90 100 90 90 50 50
8 90 100 50 90 90 75
9 70 137.5 70 70 70 62.5
10 50 100 50 90 50 75
11 90 100 50 50 90 50
12 50 175 90 90 50 75
13 50 175 50 50 90 75
14 90 100 90 50 50 75
15 90 175 90 90 90 75
16 70 137.5 70 70 70 62.5
17 70 137.5 70 70 70 62.5
18 90 175 50 90 50 50
19 90 175 50 50 50 75
Tab.1  Fractional factorial design of experiments presenting different heavy metal combination levels highlighting high metal loading condition in the study
Fig.2  Heavy metal removal: (a) Cd(II), Cu(II), Ni(II), (b) Fe(III), Pb(II) and Zn(II) and (c) COD removal, sulfate reduction and sulfide generation using the An-RBC reactor
Fig.3  (a) EDX spectra and (b) X-ray dot mapping of the bio-precipitate collected from the An-RBC reactor during experimental run # 5
Fig.4  Schematic showing metal removal mechanism by SRB in the An-RBC reactor
Fig.5  Metal removal performance of the An-RBC reactor as a function of inlet metal loading rate: (a) Cd(II), (b) Cu(II), (c) Ni(II), (d) Fe(III), (e) Pb(II) and (f) Zn(II) (▲: Metal removal rate)
Variable Ni Fe Pb Zn
source F P F P F P F P
Main Effects 2.78 0.288 2.23 0.341 9.2 0.101 10.34 0.091
Cd 0.89 0.445 0.01 0.929 0.13 0.752 26.54 0.036
Cu 0.18 0.709 0.34 0.616 3.68 0.195 0 0.974
Ni 4.54 0.167 4.17 0.178 7 0.118 4.86 0.158
Fe 4.17 0.178 5.86 0.137 5.34 0.147 19.55 0.048
Pb 0.62 0.513 0.09 0.793 1.01 0.421 9.36 0.092
Zn 0.75 0.477 1.09 0.406 8.38 0.102 2.83 0.235
2-Way Interaction effect 0.37 0.786 2.7 0.282 1.4 0.443 5.62 0.155
Cd*Cu 0.4 0.591 1.31 0.371 2.23 0.274 0.46 0.567
Cd*Ni 0 0.982 0.66 0.503 0.03 0.886 0.64 0.508
Cd*Fe 0.24 0.67 7.04 0.118 0.19 0.705 15.24 0.06
Tab.2  ANOVA of heavy metal removal from wastewater using the An-RBC reactor
Variable Ni Fe Pb Zn
term T P T P T P T P
Constant 22.39 0.002 25.01 0.002 67.37 0 65.07 0
Cd -0.94 0.445 -0.1 0.929 -0.36 0.752 -5.15 0.036
Cu -0.43 0.709 0.59 0.616 -1.92 0.195 0.04 0.974
Ni 2.13 0.167 2.04 0.178 -2.65 0.118 2.2 0.158
Fe -2.04 0.178 -2.42 0.137 -2.31 0.147 -4.42 0.048
Pb -0.79 0.513 0.3 0.793 -1 0.421 3.06 0.092
Zn -0.87 0.477 -1.04 0.406 -2.89 0.102 1.68 0.235
Cd*Cu -0.63 0.591 -1.14 0.371 -1.49 0.274 -0.68 0.567
Cd*Ni -0.03 0.982 -0.81 0.503 -0.16 0.886 -0.8 0.508
Cd*Fe 0.49 0.67 2.65 0.118 0.44 0.705 3.9 0.06
Tab.3  Student t test of heavy metal removal from wastewater using the An-RBC reactor
1 American Public Health Association (APHA) (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed. American Water Works Association (AWWA) & Water Environment Federation (WEF), Washington D.C.
2 Bai H J, Zhang Z M, Yang G E, Li B Z (2008). Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology, 99(16): 7716–7722
https://doi.org/10.1016/j.biortech.2008.01.071 pmid: 18358716
3 Brahmacharimayum B, Ghosh P K (2014). Sulfate bioreduction and elemental sulfur formation in a packed bed reactor. Journal of Environmental Chemical Engineering, 2(3): 1287–1293
https://doi.org/10.1016/j.jece.2014.05.018
4 Cao J, Li Y, Zhang G, Yang C, Cao X (2013). Effect of Fe(III) on the biotreatment of bioleaching solutions using sulfate-reducing bacteria. International Journal of Mineral Processing, 125: 27–33
https://doi.org/10.1016/j.minpro.2013.09.004
5 Chen C Y, Lin K C, Yang D T (1997). Comparison of the relative toxicity relationships based on batch and continuous algal toxicity tests. Chemosphere, 35(9): 1959–1965
https://doi.org/10.1016/S0045-6535(97)00270-1
6 Cord-Ruwisch R (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Journal of Microbiological Methods, 4(1): 33–36
https://doi.org/10.1016/0167-7012(85)90005-3
7 Dev S, Roy S, Bhattacharya J (2016). Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling. Journal of Environmental Management, 177: 101–110
https://doi.org/10.1016/j.jenvman.2016.03.049 pmid: 27085153
8 Dev S, Roy S, Bhattacharya J (2017). Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage. Journal of Environmental Management, 200: 135–144
https://doi.org/10.1016/j.jenvman.2017.04.102 pmid: 28577451
9 Gikas P (2007). Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach. Journal of Hazardous Materials, 143(1-2): 246–256
https://doi.org/10.1016/j.jhazmat.2006.09.019 pmid: 17045395
10 Guo J, Kang Y, Feng Y (2017). Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. Journal of Environmental Management, 203(Pt 1): 278–285
https://doi.org/10.1016/j.jenvman.2017.07.075 pmid: 28803152
11 Hill J W, Petrucci R H, McCreary T W, Perry S S (2005). General Chemistry. 4th Edition, Pearson Prentice Hall, Upper Saddle River.
12 Hu Z, Chandran K, Grasso D, Smets B F (2004). Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Research, 38(18): 3949–3959
https://doi.org/10.1016/j.watres.2004.06.025 pmid: 15380985
13 Jiménez-Rodríguez A M, Durán-Barrantes M M, Borja R, Sánchez E, Colmenarejo M F, Raposo F (2009). Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH. Journal of Hazardous Materials, 165(1-3): 759–765
https://doi.org/10.1016/j.jhazmat.2008.10.053 pmid: 19056169
14 Jin S, Drever J I, Colberg P J (2007). Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments. Environmental Toxicology and Chemistry, 26(2): 225–230
https://doi.org/10.1897/06-190R.1 pmid: 17713208
15 Kaksonen A H, Puhakka J A (2007). Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences, 7(6): 541–564
https://doi.org/10.1002/elsc.200720216
16 Kieu H T Q, Müller E, Horn H (2011). Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Research, 45(13): 3863–3870
https://doi.org/10.1016/j.watres.2011.04.043 pmid: 21632086
17 Kiran M G, Pakshirajan K, Das G (2016). Heavy metal removal using sulfate reducing biomass obtained from a lab scale upflow anaerobic packed bed reactor. Journal of Environmental Engineering, 142(9): C4015010
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001005
18 Kiran M G, Pakshirajan K, Das G (2017a). A new application of anaerobic rotating biological contactor reactor for heavy metal removal under sulfate reducing condition. Chemical Engineering Journal, 321: 67–75
https://doi.org/10.1016/j.cej.2017.03.080
19 Kiran M G, Pakshirajan K, Das G (2017b). Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization. Journal of Hazardous Materials, 324(Part A): 62–70
20 Lens P N L, van den Bosch M C, Hulshoff Pol L W, Lettinga G (1998). Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Water Research, 32(4): 1178–1192
https://doi.org/10.1016/S0043-1354(97)00323-0
21 Madamba P S, Liboon F A (2001). Optimization of the vacuum dehydration of celery (Apium graveolens) using the response surface methodology. Drying Technology, 19(3-4): 611–626
https://doi.org/10.1081/DRT-100103938
22 Min X, Chai L, Zhang C, Takasaki Y, Okura T (2008). Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria. Chemosphere, 72(7): 1086–1091
https://doi.org/10.1016/j.chemosphere.2008.04.001 pmid: 18533223
23 Montgomery D C (2004). Design and analysis of experiments, 7th ed. New York: Wiley
24 Nagpal S, Chuichulcherm S, Livingston A, Peeva L (2000). Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Biotechnology and Bioengineering, 70(5): 533–543
https://doi.org/10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C pmid: 11042550
25 Omil F, Lens P, Hulshoff Pol L, Lettinga G (1996). Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochemistry, 31(7): 699–710
https://doi.org/10.1016/S0032-9592(96)00015-5
26 Pakshirajan K, Kheria S (2012). Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor. Journal of Environmental Management, 101: 118–123
https://doi.org/10.1016/j.jenvman.2012.02.008 pmid: 22406852
27 Postgate J R (1984). The Sulphate-reducing Bacteria. Cambridge: Cambridge University Press, 107–152
28 Rinzema A, Lettinga G (1998). Anaerobic treatment of sulfate containing wastewater. In: Biotreatment Systems, 3: (Wise, DL, Ed). Boca Raton: CRC Press, Inc., 65–109
29 Robinson-Lora M A, Brennan R A (2009). Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions. Bioresource Technology, 100(21): 5063–5071
https://doi.org/10.1016/j.biortech.2008.11.063 pmid: 19560340
30 Saifullah, Meers E, Qadir M, de Caritat P, Tack F M, Du Laing G, Zia M H (2009). EDTA-assisted Pb phytoextraction. Chemosphere, 74: 1279–1291
https://doi.org/10.1016/j.chemosphere.2008.11.007 pmid: 19121533
31 Sema S S, Gikas P, James G M, Brent M P, Timothy R G (2012). Comparison of single and joint effects of Zn and Cu in continuous flow and batch reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 87(3): 374–380
https://doi.org/10.1002/jctb.2730
32 Sen M, Dastidar M G, Roy Choudhury P K (2007). Biological removal of Cr(VI) using Fusarium solani in batch and continuous modes of operation. Enzyme and Microbial Technology, 41(1-2): 51–56
https://doi.org/10.1016/j.enzmictec.2006.11.021
33 Teclu D, Tivchev G, Laing M, Wallis M (2009). Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria. Journal of Hazardous Materials, 161(2-3): 1157–1165
https://doi.org/10.1016/j.jhazmat.2008.04.120 pmid: 18541372
34 Utgikar V P, Chaudhary N, Koeniger A, Tabak H H, Haines J R, Govind R (2004). Toxicity of metals and metal mixtures: Analysis of concentration and time dependence for zinc and copper. Water Research, 38(17): 3651–3658
https://doi.org/10.1016/j.watres.2004.05.022 pmid: 15350416
35 Velasco A, Ramírez M, Volke-Sepúlveda T, González-Sánchez A, Revah S (2008). Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. Journal of Hazardous Materials, 151(2-3): 407–413
https://doi.org/10.1016/j.jhazmat.2007.06.004 pmid: 17640800
36 Villa-Gomez D K, Pakshirajan K, Maestro R, Mushi S, Lens P N L (2015). Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: Factorial design and response surface analyses. Biodegradation, 26(4): 299–311
https://doi.org/10.1007/s10532-015-9735-4 pmid: 26071684
37 Wang W, Lampi M A, Huang X D, Gerhardt K, Dixon D G, Greenberg B M (2009). Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium Vibrio fischeri. Environmental Toxicology, 24(2): 166–177
https://doi.org/10.1002/tox.20411 pmid: 18561304
38 Widdel F (1998). Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder A, ed. Biology of Anaerobic Microorganisms. New York: Wiley
39 Zhang M, Wang H (2016). Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Minerals Engineering, 92: 63–71
https://doi.org/10.1016/j.mineng.2016.02.008
40 Zhang M, Wang H, Han X (2016). Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Chemosphere, 154: 215–223
https://doi.org/10.1016/j.chemosphere.2016.03.103 pmid: 27058913
[1] Yu Qi, Jin Li, Rui Liang, Sitong Ji, Jianxiang Li, Meng Liu. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 14-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed