Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (4): 757-763   https://doi.org/10.1007/s11708-017-0455-9
  研究论文 本期目录
大规模地热能开发:可持续性影响
江丽1,2(), 朱联东2,3, Hiltunen Erkki2,3
1. 华中农业大学
2. 芬兰瓦萨大学
3. 瓦萨能源研究所
Large-scale geo-energy development: sustainability impacts
Li JIANG1(), Liandong ZHU2, Erkki HILTUNEN2
1. Huazhong Agricultural University, Wuhan 430070, China; Vaasa Energy Institute, FI-65101 Vaasa, Finland
2. Vaasa Energy Institute, FI-65101 Vaasa, Finland
 全文: PDF(224 KB)   HTML
摘要:

地热能是一种可再生的可替代能源,具有替代化石燃料和缓解全球变暖的潜力。 但是,地热能的发展具有环境,经济和社会文化方面的影响,需要事先加以预测,然后加以缓解。 因此,为了保证可持续发展,必须考虑相对的潜在影响。 从可持续性的角度来看,在本研究中,对地热能发展的后果进行了包括环境,经济,社会和文化方面的全面分析, 只有综合考虑可持续性方面,地热能产业才能繁荣。

Abstract

Geothermal energy is a renewable and alternative energy with the potential to replace fossil fuels and help mitigate global warming. However, the development of geothermal energy has environmental, economic and social-cultural consequences, which needs to be predicted beforehand and then mitigated. To guarantee a sustainable development, it is, therefore, essential to consider the relative potential impacts. From a sustainability point of view, in the present study, a comprehensive analysis of consequences of geothermal energy development is conducted, including environmental, economic and societal & cultural dimensions. The geothermal energy industry will prosper only if sustainable aspects can be integrally considered.

Key wordsgeothermal energy    sustainability    impact    development
收稿日期: 2016-03-15      出版日期: 2019-12-26
通讯作者: 江丽     E-mail: lilyjiangwuhan@163.com
Corresponding Author(s): Li JIANG   
 引用本文:   
江丽, 朱联东, Hiltunen Erkki. 大规模地热能开发:可持续性影响[J]. Frontiers in Energy, 2019, 13(4): 757-763.
Li JIANG, Liandong ZHU, Erkki HILTUNEN. Large-scale geo-energy development: sustainability impacts. Front. Energy, 2019, 13(4): 757-763.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0455-9
https://academic.hep.com.cn/fie/CN/Y2019/V13/I4/757
Country Capacity in 2007/MW [8] Capacity in 2010/MW [9] Capacity in 2013/MW [7]
US 2687 3086 3389
Philippines 1970 1904 1884
Indonesia 992 1197 1333
Mexico 953 958 980
Italy 811 843 901
New Zealand 472 628 895
Iceland 421 575 664
Japan 535 536 537
Tab.1  
Fig.1  
Environmental dimension Economic dimension Social & cultural dimension
– Cause soil erosion, geothermal hazards and direct or indirect land use changes;
– Damage groundwater, interrupt hydrologic cycles, and affect the water quality;
–Dust pollution and gaseous emissions from the discharge of non-condensable gases;
– Detrimental effects on local ecosystems, affecting the habitats
– Start-up phase is expensive, requiring overwhelming investments;
– The expense of storage and management of geothermal energy is also very high;
– Supporting facilities might be needed, creating additional costs
– Local people might suffer from the noise in the drilling and well-testing phase, the construction phase, and the plant operation phase;
– Landscape aesthetics might be damaged;
– It requires time for people to adapt and accept geo-energy
Tab.2  
1 B M S Giambastiani, F Tinti, D Mendrinos, M Mastrocicco. Energy performance strategies for the large scale introduction of geothermal energy in residential and industrial buildings: The GEO. POWER project. Energy Policy, 2014, 65: 315–322
https://doi.org/10.1016/j.enpol.2013.10.008
2 IEA. Policies for renewable heat: an integrated approach (IEAInsights series). 2012,
3 S J Self, B V Reddy, M A Rosen. Geothermal heat pump systems: status review and comparison with other heating options. Applied Energy, 2013, 101: 341–348
4 S Yoon, S R Lee, G H Go, S Park. An experimental and numerical approach to derive ground thermal conductivity in spiral coil type ground heat exchanger. Journal of the Energy Institute, 2015, 88(3): 229–240
https://doi.org/10.1016/j.joei.2014.10.002
5 A Bahadori , S Zendehboudi , G Zahedi . A review of geothermal energy resources in Australia: current status and prospects. Renewable & Sustainable Energy Reviews, 2013, 21: 29–34
https://doi.org/10.1016/j.rser.2012.12.020
6 T Abbas, A Ahmed Bazmi, A Waheed Bhutto, G Zahedi. Greener energy: issues and challenges for Pakistan-geothermal energy prospective. Renewable & Sustainable Energy Reviews, 2014, 31: 258–269
https://doi.org/10.1016/j.rser.2013.11.043
7 US Geothermal Energy Association. Geothermal power: international market overview. 2013–09,
8 R Bertani. Worldgeothermal generation in 2007. Geo-Heat Centre Quarterly Bulletin, 2007, 28(3): 8–19
9 A Holm, L Blodgett, D Jennejohn, K Gawell. Geothermal energy: international market update, Geothermal Energy Association. 2010–05-24,
10 R Bertani. Geothermal power generation in the world 2005–2010 update report. Geothermics, 2012, 41: 1–29
https://doi.org/10.1016/j.geothermics.2011.10.001
11 Intergovernmental Panel on Climate Change (IPCC). Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2012, 9
12 D Yang, V Sarhosis, Y Sheng. Thermal–mechanical modelling around the cavities of underground coal gasification. Journal of the Energy Institute, 2014, 87(4): 321–329
https://doi.org/10.1016/j.joei.2014.03.029
13 R Shortall, B Davidsdottir, G Axelsson. Geothermal energy for sustainable development: a review of sustainability impacts and assessment frameworks. Renewable & Sustainable Energy Reviews, 2015, 44: 391–406
https://doi.org/10.1016/j.rser.2014.12.020
14 J Phillips. Evaluating the level and nature of sustainable development for a geothermal power plant. Renewable & Sustainable Energy Reviews, 2010, 14(8): 2414–2425
https://doi.org/10.1016/j.rser.2010.05.009
15 A Akpınar, M İ Kömürcü, M Kankal, İ H Özölçer, K Kaygusuz. Energy situation and renewables in Turkey and environmental effects of energy use. Renewable & Sustainable Energy Reviews, 2008, 12(8): 2013–2039
https://doi.org/10.1016/j.rser.2007.04.011
16 L Zhu, T Ketola. Microalgae production as a biofuel feedstock: risks and challenges. International Journal of Sustainable Development and World Ecology, 2012, 19(3): 268–274
https://doi.org/10.1080/13504509.2011.636083
17 K Kim, M H Koo, S H Moon, B W Yum, K S Lee. Hydrochemistry of groundwaters in a spa area of Korea: an implication for water quality degradation by intensive pumping. Hydrological Processes, 2005, 19(2): 493–505
https://doi.org/10.1002/hyp.5551
18 W Gabriel. Assessment of geothermal wastewater disposal effects, case studies: Nesjavellir (Iceland) and Olkaria (Kenya) fields. Reykjavik, Iceland: UNU-GTP, University of Iceland, 2004
19 P Bayer, L Rybach, P Blum, R Brauchler. Review on life cycle environmental effects of geothermal power generation. Renewable & Sustainable Energy Reviews, 2013, 26: 446–463
https://doi.org/10.1016/j.rser.2013.05.039
20 I B Fridleifsson. Geothermal energy for the benefit of the people. Renewable & Sustainable Energy Reviews, 2001, 5(3): 299–312
https://doi.org/10.1016/S1364-0321(01)00002-8
21 H Kristmannsdóttir, H Armannsson. Environmental aspects of geothermal energy utilization. Geothermics, 2003, 32(4-6): 451–461
https://doi.org/10.1016/S0375-6505(03)00052-X
22 S M van Manen, R Reeves. An Assessment of changes in Kunzeaericoides var. microflora and other hydrothermal vegetation at the Wairakei–Tauhara geothermal field, New Zealand. Environmental Management, 2012, 50(4): 766–786
https://doi.org/10.1007/s00267-012-9899-1
23 S Loppi, L Paoli, C Gaggi. Diversity of epiphytic lichens and Hg contents of Xanthoriaparietina Thalli as monitors of geothermal air pollution in the Mt. Amiata Area (Central Italy). Journal of Atmospheric Chemistry, 2006, 53(2): 93–105
https://doi.org/10.1007/s10874-006-6648-y
24 J Chen, F Jiang. Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy. Renewable Energy, 2015, 74: 37–48
https://doi.org/10.1016/j.renene.2014.07.056
25 K Baris, S Kucukali. Availibility of renewable energy sources in Turkey: current situation, potential, government policies and the EU perspective. Energy Policy, 2012, 42: 377–391
https://doi.org/10.1016/j.enpol.2011.12.002
26 L Zhu, S Huo, L Qin. A microalgae-based biodiesel refinery: sustainability concerns and challenges. International Journal of Green Energy, 2015, 12(6): 595–602
https://doi.org/10.1080/15435075.2013.867406
27 Y Tanoto, M E Wijaya. Economic and environmental emissions analysis in Indonesian electricity expansion planning: low-rank coal and geothermal energy utilization scenarios. In: 2011 IEEE 1st Conference on Clean Energy and Technology (CET). Kuala Lumpur, Malaysia, 2011, 177–181
28 A Kagel, D Bates, K Gawell. A guide to geothermal energy and the environment. Geothermal Energy Association, 2007, 42–58
29 R Dipippo. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Oxford: Butterworth–Heinemann, 2012
30 K A Barrick. Geyser decline and extinction in New Zealand — energy development impacts and implications for environmental management. Environmental Management, 2007, 39(6): 783–805
https://doi.org/10.1007/s00267-005-0195-1
31 G Bloomquist, J Lund, M Gehringer. Geothermal energy. In: Crawley G M. The World Scientific Handbook of Energy. Singapore: World Scientific Publishing Company, 2013, 245–273
32 Eurobarometer. Public Awareness and acceptance of CO2 (specialEurobarometer364). 2011–05,
33 CSIRO. The Australian public’s preferences for energy sources and related technologies. 2012,
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed