Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (4): 715-730   https://doi.org/10.1007/s11708-018-0538-2
  研究论文 本期目录
面向储能设备建筑中需求响应的智能住宅能源管理系统
ARUN S. L., SELVAN M. P.()
Hybrid Electrical Systems Laboratory, Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirappalli-620015, India
Smart residential energy management system for demand response in buildings with energy storage devices
S. L. ARUN, M. P. SELVAN()
Hybrid Electrical Systems Laboratory, Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirappalli-620015, India
 全文: PDF(5427 KB)   HTML
摘要:

在现在的应用场景中,电力系统企业主要关注智能电网技术,以实现可靠且利润丰厚的电网运行。而需求侧管理即是一种通过激励调动终端用户积极参与电力市场的智能电网技术。用户通过不同方式响应电网指令从而获得汇报。现今,居民用户热衷于采用电池等储能设备,以降低在高峰时段的用电量。本文通过优化居民用户的家用电器运行时间来降低整体电费,以此证明了智能建筑能量管理系统的有效性。进而,能量管理系统可以根据用户需求和电网参数(电价、消费限额等),通过调度电池的运行状态(充电/浮充/放电)和充放电量来有效利用电池。利用Matlab对能量管理系统进行了仿真研究,结果表明终端用户得到了显著的收益。

Abstract

In the present scenario, the utilities are focusing on smart grid technologies to achieve reliable and profitable grid operation. Demand side management (DSM) is one of such smart grid technologies which motivate end users to actively participate in the electricity market by providing incentives. Consumers are expected to respond (demand response (DR)) in various ways to attain these benefits. Nowadays, residential consumers are interested in energy storage devices such as battery to reduce power consumption from the utility during peak intervals. In this paper, the use of a smart residential energy management system (SREMS) is demonstrated at the consumer premises to reduce the total electricity bill by optimally time scheduling the operation of household appliances. Further, the SREMS effectively utilizes the battery by scheduling the mode of operation of the battery (charging/floating/discharging) and the amount of power exchange from the battery while considering the variations in consumer demand and utility parameters such as electricity price and consumer consumption limit (CCL). The SREMS framework is implemented in Matlab and the case study results show significant yields for the end user.

Key wordssmart grid    demand side management (DSM)    demand response (DR)    smart building    smart appliances    energy storage
收稿日期: 2017-05-08      出版日期: 2019-12-26
通讯作者: SELVAN M. P.     E-mail: selvanmp@nitt.edu
Corresponding Author(s): M. P. SELVAN   
 引用本文:   
ARUN S. L., SELVAN M. P.. 面向储能设备建筑中需求响应的智能住宅能源管理系统[J]. Frontiers in Energy, 2019, 13(4): 715-730.
S. L. ARUN, M. P. SELVAN. Smart residential energy management system for demand response in buildings with energy storage devices. Front. Energy, 2019, 13(4): 715-730.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0538-2
https://academic.hep.com.cn/fie/CN/Y2019/V13/I4/715
Fig.1  
Fig.2  
Fig.3  
S. No Load Power rating/kW
1 Fan 0.10
2 Fluorescent lamp 0.04
3 Compact fluorescent lamp (CFL) 0.02
4 Television (TV) 0.25
5 Mobile/laptop charging 0.05
Tab.1  
S. No Load Power rating/kW
1 AC-1 1.5
2 Water heater 2.0
3 Refrigerator 0.5
4 AC-2 1.0
Tab.2  
S. No Load Power rating/kW Interruptive status
1 Cloth washer 0.8 1
2 Cloth dryer 2.7 1
3 Dish washer 2.1 0
4 Well pump 1.5 0
5 PHEV charging 2.3 0
6 Grinder 0.5 1
Tab.3  
S. No Parameter Rating
1 Capacity 200 Ah
2 Voltage 12V
3 Charging efficiency 85%
4 Discharging efficiency 95%
5 SOC limit (30–90)%
6 Charging current limit (5–20)% of rated capacity
7 Discharging current limit (0–20)% of rated capacity
Tab.4  
S. No Interval Duration/min
1 Non-deferrable load 1
2 Battery scheduling 5
3 Deferrable load 15
4 Pricing 60
Tab.5  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 X Fang, S Misra, G Xue, D Yang. Smart grid—the new and improved power grid: a survey. IEEE Communications Surveys and Tutorials, 2012, 14(4): 944–980
https://doi.org/10.1109/SURV.2011.101911.00087
2 B P Esther, K S Kumar. A survey on residential demand side management architecture, approaches, optimization models and methods. Renewable & Sustainable Energy Reviews, 2016, 59: 342–351
https://doi.org/10.1016/j.rser.2015.12.282
3 G Strbac. Demand side management: benefits and challenges. Energy Policy, 2008, 36(12): 4419–4426
https://doi.org/10.1016/j.enpol.2008.09.030
4 P Palensky, D Dietrich. Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Transactions on Industrial Informatics, 2011, 7(3): 381–388
https://doi.org/10.1109/TII.2011.2158841
5 A H Mohsenian-Rad, A Leon-Garcia. Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid, 2010, 1(2): 120–133
https://doi.org/10.1109/TSG.2010.2055903
6 P Centolella. The integration of price responsive demand into regional transmission organization (RTO) wholesale power markets and system operations. Energy, 2010, 35(4): 1568–1574
https://doi.org/10.1016/j.energy.2009.06.046
7 G T Costanzo, G Zhu, M F Anjos, G Savard. A system architecture for autonomous demand side load management in smart buildings. IEEE Transactions on Smart Grid, 2012, 3(4): 2157–2165
https://doi.org/10.1109/TSG.2012.2217358
8 A J Conejo, J M Morales, L Baringo. Real-time demand response model. IEEE Transactions on Smart Grid, 2010, 1(3): 236–242
https://doi.org/10.1109/TSG.2010.2078843
9 V Pradhan, V S K Murthy Balijepalli, S A Khaparde. An effective model for demand response management systems of residential electricity consumers. IEEE Systems Journal, 2016, 10(2): 434–445 doi:10.1109/JSYST.2014.2336894
10 D Setlhaolo, X Xia. Optimal scheduling of household appliances with a battery storage system and coordination. Energy and Building, 2015, 94: 61–70
https://doi.org/10.1016/j.enbuild.2015.02.051
11 E L Ratnam, S R Weller, C M Kellett. Scheduling residential battery storage with solar PV: assessing the benefits of net metering. Applied Energy, 2015, 155: 881–891
https://doi.org/10.1016/j.apenergy.2015.06.061
12 S Gottwalt, W Ketter, C Block, J Collins, C Weinhardt. Demand side management—a simulation of household behavior under variable prices. Energy Policy, 2011, 39(12): 8163–8174
https://doi.org/10.1016/j.enpol.2011.10.016
13 T Hubert, S Grijalva. Modeling for residential electricity optimization in dynamic pricing environments. IEEE Transactions on Smart Grid, 2012, 3(4): 2224–2231
https://doi.org/10.1109/TSG.2012.2220385
14 X Chen, T Wei, S Hu. Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home. IEEE Transactions on Smart Grid, 2013, 4(2): 932–941
https://doi.org/10.1109/TSG.2012.2226065
15 M Pipattanasomporn, M Kuzlu, S Rahman. An algorithm for intelligent home energy management and demand response analysis. IEEE Transactions on Smart Grid, 2012, 3(4): 2166–2173
https://doi.org/10.1109/TSG.2012.2201182
16 D Setlhaolo, X Xia, J Zhang. Optimal scheduling of household appliances for demand response. Electric Power Systems Research, 2014, 116: 24–28
https://doi.org/10.1016/j.epsr.2014.04.012
17 H Chen, T N Cong, W Yang, C Tan, Y Li, Y Ding. Progress in electrical energy storage system: a critical review. Progress in Natural Science, 2009, 19(3): 291–312
https://doi.org/10.1016/j.pnsc.2008.07.014
18 A Purvins, I T Papaioannou, L Debarberis. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids. Energy Conversion and Management, 2013, 65: 272–284
https://doi.org/10.1016/j.enconman.2012.07.018
19 J Leadbetter, L Swan. Battery storage system for residential electricity peak demand shaving. Energy and Building, 2012, 55: 685–692
https://doi.org/10.1016/j.enbuild.2012.09.035
20 B Saravanan. DSM in an area consisting of residential, commercial and industrial load in smart grid. Frontiers in Energy, 2015, 9(2): 211–216
https://doi.org/10.1007/s11708-015-0351-0
21 M Muratori, G Rizzoni. Residential demand response: dynamic energy management and time-varying electricity pricing. IEEE Transactions on Power Systems, 2016, 31(2): 1108–1117
https://doi.org/10.1109/TPWRS.2015.2414880
22 A T Elsayed, C R Lashway, O A Mohammed. Advanced battery management and diagnostic system for smart grid infrastructure. IEEE Transactions on Smart Grid, 2016, 7(2): 897–905
23 A Aktas, K Erhan, S Ozdemir, E Ozdemir. Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications. Electric Power Systems Research, 2017, 144: 185–196
https://doi.org/10.1016/j.epsr.2016.11.022
24 R Belfkira, L Zhang, G Barakat. Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy, 2011, 85(1): 100–110
https://doi.org/10.1016/j.solener.2010.10.018
25 D Huang, H Zareipour, W D Rosehart, N Amjady. Data mining for electricity price classification and the application to demand-side management. IEEE Transactions on Smart Grid, 2012, 3(2): 808–817
https://doi.org/10.1109/TSG.2011.2177870
26 S Fan, C Mao, L Chen. Next-day electricity-price forecasting using a hybrid network. IET Generation, Transmission & Distribution, 2007, 1(1): 176–182
https://doi.org/10.1049/iet-gtd:20060006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed