Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (4): 603-611   https://doi.org/10.1007/s11708-019-0643-x
  研究论文 本期目录
深部煤炭原位流态化开采的理论与技术探索
谢和平1(), JU Yang2, REN Shihua3, GAO Feng4, LIU Jianzhong5, ZHU Yan6
1. 深圳大学深地下科学与绿色能源研究所;深圳清洁能源研究所,;四川大学
2. 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;中国矿业大学(徐州)深层地下资源流化开采前沿科研中心
3. 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;中国煤炭科学研究院
4. 中国矿业大学(徐州)岩土力学与地下工程国家重点实验室
5. 中煤技术工程集团有限公司
6. 中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;中国矿业大学(北京)力学与土木工程学院
Theoretical and technological exploration of deep in situ fluidized coal mining
Heping XIE1(), Yang JU2, Shihua REN3, Feng GAO4, Jianzhong LIU5, Yan ZHU6
1. Institute of Deep Underground Science and Green Energy, Shenzhen University, Shenzhen 518060, China; Institute of Clean Energy, Shenzhen 518060, China; Sichuan University, Chengdu 610065, China
2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China; Frontier Scientific Research Centre for Fluidlized Mining of Deep Underground Resources, China University of Mining and Technology, Xuzhou 221006, China
3. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China; China Coal Research Institute, Beijing 100013, China
4. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221006, China
5. China Coal Technology and Engineering Group Co., Ltd., Beijing 100013, China
6. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China; School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
 全文: PDF(2145 KB)   HTML
摘要:

全球采矿业不可避免地诉诸于从地下深处开采资源。然而,传统的采矿方法会引起各种问题,例如,相当大的采矿难度,环境恶化以及频繁的灾难性事故。为了将来开发深层资源,必须重新考虑采矿的概念,并且必须应用创新的新理论,方法和技术。为了有效地获取深度超过2000 m的煤炭资源,需要有关深层原位流化开采的新理论和技术概念。需要突破开采深度的限制,以环保,安全和有效的方式获取深煤资源。其特点是“地上没有煤,煤矿里没有人”。本文构建了深部原位流态化开采的颠覆性理论体系,提出了深部原位流态化开采的采动岩体力学理论、“三场”可视化理论、原位转化多物理场耦合理论以及原位开采设计、转化与输运理论。建立了深部煤炭资源智能化、无人化、流态化开采的关键技术体系,提出了深部原位流态化开采的地质保障技术、精准探测与导航技术、智能开拓布局技术、智能化洗选技术、采选充电气热一体化的流态化开采技术、无人化智能输送与提升技术、能量诱导物理破碎流态化开采技术、化学转化流态化开采技术、生物降解流态化开采技术、煤粉爆燃发电关键技术等。总之,本文为实现深部地下煤炭资源开采技术的突破性创新开发了新的理论和技术体系。

Abstract

Mining industries worldwide have inevitably resorted to exploiting resources from the deep underground. However, traditional mining methods can cause various problems, e.g., considerable mining difficulty, environmental degradations, and frequent disastrous accidents. To exploit deep resources in the future, the concept of mining must be reconsidered and innovative new theories, methods, and technologies must be applied. To effectively acquire coal resources deeper than 2000 m, new theoretical and technological concepts about deep in situ fluidized mining are required. The limits of mining depth need to be broken to acquire deep-coal resources in an environmentally friendly, safe, and efficient manner. This is characterized by ‘There are no coal on the ground and no men in the coal mine’. First, this paper systematically explains deep in situ fluidized coal mining. Then, it presents a new theoretical concept, including the theories of mining-induced rock mechanics, three-field visualization, multi-physics coupling for in situ transformation, and in situ mining, transformation and transport. It also presents key technological concepts, including those of intelligent, unmanned, and fluidized mining. Finally, this paper presents a strategic roadmap for deep in situ fluidized coal mining. In summary, this paper develops new theoretical and technological systems for accomplishing groundbreaking innovations in mining technologies of coal resources in the deep underground.

Key wordscoal resource    deep in situ    fluidized mining    theoretical system    key technologies    strategic roadmap
收稿日期: 2019-04-09      出版日期: 2019-12-26
通讯作者: 谢和平     E-mail: xiehp@scu.edu.cn
Corresponding Author(s): Heping XIE   
 引用本文:   
谢和平, JU Yang, REN Shihua, GAO Feng, LIU Jianzhong, ZHU Yan. 深部煤炭原位流态化开采的理论与技术探索[J]. Frontiers in Energy, 2019, 13(4): 603-611.
Heping XIE, Yang JU, Shihua REN, Feng GAO, Jianzhong LIU, Yan ZHU. Theoretical and technological exploration of deep in situ fluidized coal mining. Front. Energy, 2019, 13(4): 603-611.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0643-x
https://academic.hep.com.cn/fie/CN/Y2019/V13/I4/603
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 W Qi, J Zhang, N Zhou, Z Wu, J Zhang. Mechanism by which backfill body reduces amount of energy released in deep coal mining. Shock and Vibration, 2019, 8253269
https://doi.org/10.1155/2019/8253269
2 C Li, Y Guan, X Wang, G Li, C Zhou, Y Xun. Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy. Energy, 2018, 142: 689–701
https://doi.org/10.1016/j.energy.2017.10.056
3 H Xie, H Zhou, D Xu, H Wang, R Zhang, F Gao. Research and consideration on deep coal mining and critical mining depth. Journal of China Coal Society, 2012, 37(04): 535–542 (in Chinese)
4 H Xie, F Gao, Y Ju, M Gao, R Zhang, Y Gao, J Liu, L Xie. Quantitative definition and investigation of deep mining. Journal of China Coal Society, 2015, (01): 1–10 (in Chinese)
5 H Xie, F Gao, Y Ju. Research and development of rock mechanics in deep ground engineering. Chinese Journal of Rock Mechanics and Engineering, 2015, (11): 2161–2178 (in Chinese)
6 H Xie, H Zhou, J Liu, F Gao, R Zhang, D Xu, Y Zhang. Mining-induced mechanical behavior in coal seams under different mining layouts. Journal of China Coal Society, 2011, (07):1067–1074 (in Chinese)
7 H Xie, F Gao, Y Ju, S Ge, G Wang, R Zhang, M Gao, G Wu, J Liu. Theoretical and technological conception of the fluidization mining for deep coal resources. Journal of China Coal Society, 2017, 42(03): 547–556 (in Chinese)
8 H Xie, Y Ju, F Gao, M Gao, R Zhang. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources. Tunnelling and Underground Space Technology, 2017, 67: 68–70
https://doi.org/10.1016/j.tust.2017.04.021
9 H Xie, Y Ju, M Gao, F Gao, J Liu, H Ren, S Ge. Theories and technologies for in situ fluidized mining of deep underground coal resources. Journal of China Coal Society, 2018, 43(05): 1210–1219 (in Chinese)
10 H Xie, J Wang, Y Ju, J Liu. Coal Industry Reform: Strategies and Directions. Beijing: Science Press, 2018 (in Chinese)
11 H Xie, F Gao, Y Ju, R Zhang, M Gao, J Deng. Novel idea and disruptive technologies for the exploration and research of deep earth. Advanced Engineering Sciences, 2017, (01): 1–8 (in Chinese)
12 H Zhou, H Xie, J Zuo. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Advances in Mechanics, 2005, (01): 91–99 (in Chinese)
13 H Xie, Z Zhang, F Gao, R Zhang, M Gao, J Liu. Stress-fracture-seepage field behavior of coal under different mining layouts. Journal of China Coal Society, 2016, (10): 2405–2417 (in Chinese)
14 Y Ju, J Zheng, M Epstein, L Sudak, J Wang, X Zhao. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms. Computer Methods in Applied Mechanics and Engineering, 2014, 279: 212–226
https://doi.org/10.1016/j.cma.2014.06.035
15 Y Ju, L Wang, H Xie, G Ma, Z Zheng, L Mao. Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques. Rock Mechanics and Rock Engineering, 2017, 50(6): 1383–1407
https://doi.org/10.1007/s00603-017-1171-9
16 R Wu. Coal Gasification. Xuzhou: China University of Mining and Technology Press, 1989 (in Chinese)
17 J Ling, L Yu. Underground coal gasification by the new technique of “long passage with large cross section”. China Coal, 2002, (12): 10–12 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed