Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Front. Inform. Technol. Electron. Eng    2016, Vol. 17 Issue (10) : 1095-1106    https://doi.org/10.1631/FITEE.1500311
Article
Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR
Hui ZHANG1,2,3(),Jun HONG1,Xiao-lan QIU1,3,Ji-chuan LI4,Fang-fang LI1,3,Feng MING1
1. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
2. University of the Chinese Academy of Sciences, Beijing 100190, China
3. Key Laboratory of Technology in Geo-spatial Information Processing and Application Systems, Beijing 100190, China
4. Science and Technology on Millimeter-Wave Laboratory, Beijing 100854, China
 Download: PDF(3180 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

Keywords Synthetic aperture radar (SAR)      Along-track interferometric      Motion compensation      Residual error      Interferometric phase     
Corresponding Author(s): Hui ZHANG   
Issue Date: 04 November 2016
 Cite this article:   
Hui ZHANG,Jun HONG,Xiao-lan QIU, et al. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR[J]. Front. Inform. Technol. Electron. Eng, 2016, 17(10): 1095-1106.
 URL:  
https://academic.hep.com.cn/fitee/EN/10.1631/FITEE.1500311
https://academic.hep.com.cn/fitee/EN/Y2016/V17/I10/1095
1 Budillon, A., Pascazio, V., Schirinzi, G., 2008. Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geosci. Remote Sens. Lett., 5(3):349–353.
2 Chapin, E., Chen, C.W., 2009. Airborne along-track interferometry for GMTI. IEEE Aerosp. Electron. Syst. Mag., 24(5):13–18.
3 Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets. Proc. IEEE Radar Conf., 99–104.
4 Cumming, I.G., Wong, F.H., 2004. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, London.
5 Dall, J., Grinder-Pedersen, J., Madsen, S.N., 1997. Calibration of a high resolution airborne 3D SAR. IEEE Int. Geoscience and Remote Sensing Symp., p.1018–1021.
6 Fischer, J., Baumgartner, S., Reigber, A., , 2008. Geometric, radiometric, polarimetric and along-track interferometric calibration of the new F-SAR system of DLR in X-Band. 7th European Conf. on Synthetic Aperture Radar, p.109–112.
7 Fornaro, G., 1999. Trajectory deviations in airborne SAR: analysis and compensatin. IEEE Trans. Aerosp. Electron. Syst., 35(3):997–1009.
8 Fornaro, G., Franceschetti, G., Perna, S., 2005. Motion compemsatiom errors: effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electr. Syst., 41(4): 1338–1352.
9 Fornaro, G., Franceschetti, G., Perna, S., 2006. On centerbeam approximation in SAR motion compensation. IEEE Geosci. Remote Sens. Lett., 3(2):276–280.
10 Gierull, C.H., 2003. Digital Channel Balancing of Along-Track Interferometric SAR Data. Technical Memorandum No. DRDC-OTTAWA-TM-2003-024, Defence R&D Canada-Ottawa.
11 Glerull, C.H., 2002. Moving Target Detection with Along-Track SAR Interferometry: a Theoretical Analysis. Technical Memorandum No. DRDC-OTTAWA-TR-2002-084, Defence R&D Canada-Ottawa.
12 Goldstein, R.M., Zebker, H.A., 1987. Interferometric radar measurement of ocean surface currents. Nature, 328(6132):707–709.
13 Gonzalez, J.H., Bachmann, M., Krieger, G., , 2010. Development of the TanDEM-X calibration concept: analysis of systematic errors. IEEE Trans. Geosci. Remote Sens., 48(2):716–726.
14 Hirsch, O., 2001. Calibration of an airborne along-track interferometric SAR system for accurate measurement of velocities. IEEE Int. Geoscience and Remote Sensing Symp., p.558–560.
15 Imel, D.A., 2002. AIRSAR along-track interferometry data. AIRSAR Earth Science and Applications Workshop, p.1–58.
16 Li, F.F., Qiu, X.L., Meng, D.D., , 2014. Effects of motion compensation errors on performance of airborne dualantenna InSAR. J. Electr. Inform. Technol., 35(3): 559–567 (in Chinese).
17 Madsen, S.N., Skou, N., Woelders, K., , 1996. EMISAR single pass topographic SAR interferometer modes. IEEE Geoscience and Remote Sensing Symp., p.674–676.
18 Marom, M., Goldstein, R.M., Thornton, E.B., , 1990. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature, 345(6278):793–795.
19 Moccia, A., Rufino, G., 2001. Spaceborne along-track SAR interferometry: performance analysis and mission scenarios. IEEE Trans. Aerosp. Electron. Syst., 37(1): 199–213.
20 Moreira, A., Huang, Y.H., 1994. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens., 32(5):1029–1040.
21 Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst., AES-7(3):499–505.
22 Reigber, A., Alivizatos, E., Potsis, A., , 2006. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation. IEE Proc.-Radar Sonar Navig., 153(3):301–310.
23 Rosen, P.A., Hensley, S., Joughin, I.R., , 2000. Synthetic aperture radar interferometry. Proc. IEEE, 88(3):333–382.
24 Zebker, H.A., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens., 30(5):950–959.
25 Zhang, H., Hong, J., 2013. Sensitivity analysis of along-track interferometric synthetic aperture radar (ATI-SAR) in the presence of squint. IET Int. Radar Conf., p.1–5.
26 Zhang, Y.H., 2006. Along Track Interferometry Synthetic Aperture Radar Techniques for Ground Moving Target Detection. Technical Report No. AFRL-SN-RS-TR-2005-410, Stiefvater Consultants.
27 Zink, M., Krieger, G., Fiedler, H., , 2007. The TanDEMX mission: overview and status. IEEE Int. Geoscience and Remote Sensing Symp., p.3944–3947.
[1] FITEE-1095-16012-HZ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed