Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med Chin    2009, Vol. 3 Issue (2) : 230-235     DOI: 10.1007/s11684-009-0023-8
Simultaneous acquisition of CT angiography and whole brain CT perfusion images by using multiphase dynamic helical scan on 16 MDCT
Weiwei CHEN(), Jianpin QI, Wenzhen ZHU, Wenhua HUANG, Jinmei SONG
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Download: PDF(233 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We implemented a new protocol — multiphase dynamic helical scan to acquire CT angiography (CTA) and whole brain CT perfusion (CTP) images simultaneously with single scan on 16 multidetector CT (MDCT). A total of 90 patients who were randomly assigned into 3 groups were included in our study. Each group underwent CT scan by using the new protocol, traditional CTA and CTP protocol, respectively. The image quality of CTA, the CTP parameter values and the X-ray doses were measured and compared between the new protocol and the traditional protocols. There was no statistically significant difference in the CTA image quality between the above methods (P=0.55). For CTP parameters, the new protocol tended to overestimate the blood volume (BV) and blood flow (BF) value, and to underestimate the mean transit time (MTT) value compared with the traditional method. However, there was no statistically significant difference in BV, BF, and MTT value between the two methods except permeability surface (PS) (P>0.05). The volume CT dose index (CTDIvol) and dose length product (DLP) of our protocol were lower than the traditional one. The new protocol can obtain valuable diagnostic information in a shorter time without significant compromise in image quality. In addition, it reduces the radiation dose as well as contrast medium usage on the patient.

Keywords computed tomography angiography      computed tomography perfusion     
Corresponding Authors: CHEN Weiwei,   
Issue Date: 05 June 2009
URL:     OR
group 1group 2group 3
protocolsnew protocolstandard CTAstandard CTP
scan typehelicalhelicalcine
rotation time/s0.50.81.0
detector configuration16×1.2516×0.6258×2.5
beam collimation/mm201020
table speed/mm·rot-1355.620
scan length/mm11015020
delay time/s5≈175
total exposure time/s29.4*22.850
tube tension/kV12012080
tube current/mA220220200
volume of contrast medium/mLspeed of contrast medium/mL·s-1508050
CTDIvol total/mGy161.98*71.43636.25
DLP total/mGy·cm2394.0*1147.061272.5
Tab.1  Parameters of different scan protocols
Fig.1  A 40-year-old woman suffered from astrocytoma (grade III) was included in group 1. (a) CTP images of the whole brain depicted the outline and hemodynamic change of a tumor in the deep right temporal region. (b), (c), and (d) CTA images (VR and MIP) show the feeding vessels (arrow) and displacement of M1, M2 segments of right middle cerebral artery (arrowhead).
Fig.2  CTP images of the two methods. (a) and (b) show the CTP images gained by multiphase dynamic helical scan and traditional method, respectively. We chose only one slice from the whole brain CTP images here to compare the image quality with the traditional method. Both of the CTP images of the two methods could show the location and hemodynamic change of the tumor clearly.
normal cortical gray matternormal white matterhead of the caudate nucleuslentiform nuclei
BVgroup 12.960.911.692.04
group 32.940.911.611.99
P value0.8790.9890.240.148
BFgroup 182.2519.2246.4260.77
group 380.7517.9144.0860.64
P value0.780.1620.330.946
MTTgroup 12.565.012.772.31
group 32.905.062.82.31
P value0.680.8570.7980.921
PSgroup 11.810.831.591.01
P value0.010.0000.0000.000
Tab.2  Comparison of the values of CTP parameters of the two methods
Fig.3  CTA images gained by two methods. (a) CTA images gained by multiphase dynamic helical scan. The CTP images gained simultaneously of this patient are shown in Fig. 2a. (b) CTA images gained by traditional method. Both show the abundant abnormal vessels and the main feeding arteries clearly.
groupsmain arteriesfirst-order branchessecond-order branchesthird-order branches
P value0.23210.5570.378
Tab.3  Diagnostic image quality of cerebral arteries in different scan protocols
1 Xue J, Gao P, Wang X, Liao X, Wang Y, Wang Y. Ischemic lesion typing on computed tomography perfusion and computed tomography angiography in hyperacute ischemic stroke: a preliminary study. Neurol Res , 2008, 30(4): 337-340
doi: 10.1179/174313208X300297
2 Parsons M W. Perfusion CT: is it clinically useful? Int J Stroke , 2008, 3(1): 41-50
doi: 10.1111/j.1747-4949.2008.00175.x
3 Scaroni R, Tambasco N, Cardaioli G, Parnetti L, Paloni F, Boranga B, Pelliccioli G P. Multimodal use of computed tomography in early acute stroke, part 2. Clin Exp Hypertens , 2006, 28(3,4): 427-431
4 Murphy B D, Fox A J, Lee D H, Sahlas D J, Black S E, Hogan M J, Coutts S B, Demchuk A M, Goyal M, Aviv R I, Symons S, Gulka I B, Beletsky V, Pelz D, Hachinski V, Chan R, Lee T Y. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke , 2006, 37(7): 1771-1777
doi: 10.1161/01.STR.0000227243.96808.53
5 Zhang Q B, Feng X Y, He H J, Jiang B D. Multi-slice helical CT perfusion imaging in evaluating intracranial neoplasms and tumor-like lesions. Zhonghua Zhong Liu Za Zhi , 2007, 29(2): 131-135 (in Chinese)
6 Cianfoni A, Colosimo C, Basile M, Wintermark M, Bonomo L. Brain perfusion CT: principles, technique and clinical applications. Radiol Med , 2007, 112(8): 1225-1243
doi: 10.1007/s11547-007-0219-4
7 Schramm P. High-concentration contrast media in neurological multidetector-row CT applications: implications for improved patient management in neurology and neurosurgery. Neuroradiology , 2007, 49(Suppl1): S35-45
doi: 10.1007/s00234-007-1471-3
8 Eastwood J D, Lev M H, Azhari T, Lee T Y, Barboriak D P, Delong D M, Fitzek C, Herzau M, Wintermark M, Meuli R, Brazier D, Provenzale J M. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology , 2002, 222(1): 227-236
doi: 10.1148/radiol.2221010471
9 Scharf J, Brockmann M A, Daffertshofer M, Diepers M, Neumaier-Probst E, Weiss C, Paschke T, Groden C. Improvement of sensitivity and inter-rater reliability to detect acute stroke by dynamic perfusion computed tomography and computed tomography angiography. J Comput Assist Tomogr , 2006, 30(1): 105-110
doi: 10.1097/
10 Rydberg J, Buckwalter K A, Caldemeyer K S, Phillips M D, Conces D J Jr, Aisen A M, Persohn S A, Kopecky K K. Multisection CT: Scanning Techniques and Clinical Applications. Radiographics , 2000, 20(6): 1787-1806
11 Wintermark M, Fischbein N J, Smith W S, Ko N U, Quist M, Dillon W P. Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol , 2005, 26(1): 104-112
12 Schramm P, Schellinger P D, Klotz E, Kallenberg K, Fiebach J B, Külkens S, Heiland S, Knauth M, Sartor K. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke , 2004, 35(7): 1652-1658
doi: 10.1161/01.STR.0000131271.54098.22
13 Youn S W, Kim J H, Weon Y C, Kim S H, Han M K, Bae H J. Perfusion CT of the brain using 40-mm-wide detector and toggling table technique for initial imaging of acute stroke. AJR Am J Roentgenol , 2008, 191(3): W120-126
doi: 10.2214/AJR.07.2519
14 Laghi A. Multidetector CT (64 Slices) of the liver: examination techniques. Eur Radiol , 2007, 17(3): 675-683
doi: 10.1007/s00330-006-0405-0
15 Eastwood J D, Lev M H, Provenzale J M. Perfusion CT with iodinated contrast material. Am J Roentgenol , 2003, 180(1): 3-12
16 Ezzeddine M A, Lev M H, McDonald C T, Rordorf G, Oliveira-Filho J, Aksoy F G, Farkas J, Segal A Z, Schwamm L H, Gonzalez R G, Koroshetz W J. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke , 2002, 33(4): 959-966
doi: 10.1161/hs0402.105388
17 Lev M H, Segal A Z, Farkas J, Hossain S T, Putman C, Hunter G J, Budzik R, Harris G J, Buonanno F S, Ezzeddine M A, Chang Y, Koroshetz W J, Gonzalez R G, Schwamm L H. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke , 2001, 32(9): 2021-2028
doi: 10.1161/hs0901.095680
18 Dittrich R, Akdeniz S, Kloska S P, Fischer T, Ritter M A, Seidensticker P, Heindel W, Ringelstein E B, Nabavi D G. Low rate of contrast-induced nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol , 2007, 254(11): 1491-1497
doi: 10.1007/s00415-007-0528-5
19 Roberts H C, Roberts T P, Smith W S, Lee T J, Fischbein N J, Dillon W P .Multisection dynamic CT perfusion for acute cerebral ischemia: the "toggling-table" technique. Am J Neuroradiol , 2001, 22(6): 1077-1080
20 Wintermark M, Smith W S, Ko N U, Quist M, Schnyder P, Dillon W P. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. Am J Neuroradiol , 2004, 25(5): 720-729
No related articles found!
Full text