Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    0, Vol. Issue () : 157-171    https://doi.org/10.1007/s11684-013-0272-4
REVIEW
Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis
Yue Yu, Jie He()
Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
 Download: PDF(344 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Non-small-cell lung cancer (NSCLC) is the most common cause of premature death among the malignant diseases worldwide. The current staging criteria do not fully capture the complexity of this disease. Molecular biology techniques, particularly gene expression microarrays, proteomics, and next-generation sequencing, have recently been developed to facilitate effectively its molecular classification. The underlying etiology, pathogenesis, therapeutics, and prognosis of NSCLC based on an improved molecular classification scheme may promote individualized treatment and improve clinical outcomes. This review focuses on the molecular classification of NSCLC based on gene expression microarray technology reported during the past decade, as well as their applications for improving the diagnosis, staging and treatment of NSCLC, including the discovery of prognostic markers or potential therapeutic targets. We highlight some of the recent studies that may refine the identification of NSCLC subtypes using novel techniques such as epigenetics, proteomics, or deep sequencing.

Keywords non-small-cell lung cancer      molecular typing      individualized medicine      molecular-targeted therapy      gene expression profiling     
Corresponding Author(s): He Jie,Email:prof.hejie@263.net   
Issue Date: 05 June 2013
 Cite this article:   
Yue Yu,Jie He. Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis[J]. Front Med, 0, (): 157-171.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0272-4
https://academic.hep.com.cn/fmd/EN/Y0/V/I/157
Fig.1  Summary of potential molecular targets and therapeutic agents. EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; FGFR, fibroblast growth factor receptor; HER, human epidermal growth factor receptor; mTOR, mammalian target of rapamycin; PDGFR, platelet-derived growth factor receptor; PI3K (PIK3CA), phosphatidylinositol 3-kinase; VEGFR, vascular endothelial growth factor receptor. Partial data are obtained from Ausborn [].
Fig.2  Ten driver mutations in 60% (252/422) of lung adenocarcinomas. KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; EGFR, epidermal growth factor receptor; ALK fusion, anaplastic lymphoma kinase fusion gene; BRAF, v-raf murine sarcoma viral oncogene homolog B1; PIK3CA (PI3K), phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha; MET amp, met proto-oncogene amplification; HER2, human epidermal growth factor receptor-2; MEK1 (MAP2K1), mitogen-activated protein kinase kinase 1; NRAS, neuroblastoma RAS viral (v-ras) oncogene homolog; AKT1, v-akt murine thymoma viral oncogene homolog 1. Data were obtained from a report by the Lung Cancer Mutation Consortium [].
TypeSubtypeDescriptionPathwayPotentially relevant therapiesRelevant histologicalsubtypesStrength of evidencefor clinical use
11.1EGFR sensitizingmutationsEGFRTKIs and chemotherapyADCHigh
1.2EGFR resistancemutations includingT790MEGFRDual EGFR/HER2 TKI, c-MET inhibitors+/ - EGFR–TKIs, Hsp90 inhibitors, dual MET/VEGFR2 inhibitors, Chk1 inhibitorsADCHigh
1.3VeriStrat proteomicsignatureEGFRTKIs and bevacizumabADCHigh
2K-ras mutationsK-rasDual MAPK and AKT/PI3K inhibitors, Hsp90 inhibitorsADCHigh
3ALK fusionALK fusionALK inhibitors, Hsp90 inhibitorsADCHigh
44.1c-MET overexpressionc-METc-MET inhibitors, dual Met/VEGFR2 inhibitors, ALK/MET inhibitors, c-MET monoclonal antibodiesADC, SCLC, SCCMedium
4.2c-MET mutationsc-METc-MET inhibitors, dual Met/VEGFR2 inhibitors, ALK/MET inhibitors, c-MET monoclonal antibodiesADC, SCLC, SCC, LCCLow
55.1PI3KCA amplification, mutationsAKT/PI3KPI3K, AKT, mTOR inhibitorsADCLow
5.2PTEN deletions/methylationAKT/PI3KPI3K, AKT, mTOR inhibitorsADCLow
66.1VEGFR overexpressionVEGFRVEGFR inhibitorsSCLCLow
6.2Bcl-2 overexpressionP53/BCLBCL-2 InhibitorsSCLCLow
7ROS1 translocationROS-1ROS1 inhibitorsADC (1.5%)Medium
8Epigenetic alterations-HDAC inhibitors, epigenetic inhibitorswith cytotoxic agents-Low
9IGF alterationsIGFIGF1R monoclonal antibodies, IGF1R TKIsADC,SCC,SCLC-
Tab.1  Molecular classification of lung cancer based on genetic aberrations []
ResearchersSignatureTechnologySamplesResults
Shibata et al. [7]Hierarchical clustering analysisaCGH55 ADCsClassified three subgroups in ADC
Gordon et al. [8]8-gene signatureMicroarray47 MPMs and 166 ADCsDistinguished MPM from lung cancer
Arai et al. [10]Hot-spot mutation analysisaCGH131 synchronous double lung cancers and 230 T3 tumorsDistinguished second primary lung cancer from metastatic lesion
Giordano et al. [12]20-gene signatureMicroarray57 lung, 51 colon, and 46 ovary ADCsIdentified an organ-specific molecular classification
Garber et al. [14]Hierarchical clustering analysisMicroarray56 lung cancersProvided a molecular basis for the classification of lung cancer into four morphological subtypes
Bhattacharjee et al. [15]Hierarchical clustering analysisOligonucleotide microarray203 lung tumors and 17 normal lung specimensDefined four distinct subclasses of primary lung ADC
Hosseinzadeh et al. [16]Hierarchical clustering analysis and tree induction modelsGene Set Enrichment Analysis databasePublic databasesClassified three classes of lung cancer
Xi et al. [18]318-gene signatureMicroarrayTwo previously published lung ADC microarray data setsPredicted lymph node metastasis in lung ADCs
Takada et al. [20]23-, 55-, 43-, and 35-gene signaturesMicroarray92 NSCLCs (37 SCCs and 55 ADCs)Identified different signatures for predicting lymph node metastasis in NSCLC
West et al. [27]Different driver mutationsRviewNoneIdentified a novel classification of lung cancer into molecular subtypes based on driver mutations
Yamauchi et al. [28]139-gene signatureMicroarray439 ADCs and a publicly available data setPredicted the aggressiveness of lung ADCs irrespective of EGFR mutations
Wan et al. [30]12-gene signatureStatistical methods and machine learning algorithmsThree previously published lung ADC microarray data setsPredicted recurrence risk and chemosensitivity
Chen et al. [31]94-gene signatureMicroarray442 ADCs and two independent NSCLC microarray data setsPredicted survival and chemosensitivity for early stage NSCLC
Hou et al. [33]Hierarchical clustering analysis and a 25-gene signatureMicroarray90 NSCLCsDefined six subclasses of NSCLC and predicted pemetrexed response
Eschrich et al. [35]10-gene signatureMicroarray48 cell lines (including 4 NSCLC cell lines)Predicted radiosensitivity for 12 cell lines (including 3 NSCLC cell lines)
Larsen et al. [37]54-gene signatureMicroarray48 ADCs and two independent ADC microarray data setsPredicted the risk of recurrent disease for early stage lung ADC
Tomida et al. [39]82-gene signatureMicroarray117 ADCs and an independent ADC microarray data setsIdentified ADC patients at very high risk for relapse
Lu et al. [40]51-gene signatureMicroarray142 Stage I ADCs and four independent data setsPredicted tumor recurrence in Stage I NSCLC
Guo et al. [41]37-gene signature and 12-gene signaturePreviously reported gene expression profiles170 ADCsPredicted survival with 96% accuracy; 12-gene signature predicted stage of 94.2% of patients
Lu et al. [42]64-gene signatureMicroarray, RT-PCR324 Stage I NSCLCsPredicted survival with 87% accuracy
Lau et al. [49]3-gene signatureRT-PCR147 Stage I to II NSCLCsPredicted overall survival and classified Stages I and II
Endoh et al. [43]8-gene signatureRT-PCR106 ADCsStratified patients by prognosis
Beer et al. [19]50-gene signatureOligonucleotide arrays170 ADCsPredicted survival
Sun et al. [44]50-gene signatureOligonucleotide arrays390 NSCLCsPredicted survival for NSCLC
Raponi et al. [45]50-gene signatureRT-PCR, microarray165 SCCsPredicted survival for SCC
Roepman et al. [46]72-gene signatureMicroarray241 NSCLCsAssociated the absence of disease and survival
Seike et al. [47]11-cytokine gene signatureRT-PCR120 ADCsPredicted survival
Lu et al. [48]34-microRNA signature and 27-microRNA signatureMicroRNA microarray697 Stage I NSCLCsPredicted relapse-free survival
Wan et al. [30]12-gene signatureMicroarray, RT-PCR442ADCsPredicted survival and chemoresponse in cell lines (NCI-60)
Chen et al. [31]94-gene signatureMicroarray, RT-PCR692 NSCLCsPredicted survival and response to adjuvant chemotherapy
Chen et al. [50]5-gene signatureMicroarray, RT-PCR125 NSCLCsPredicted survival
Xie et al. [52]59-gene signatureMicroarray542 NSCLCsPredicted survival for Stage I
Okayama et al. [51]9-gene signatureMicroarray, RT-PCR343 ADCs with ALK-positive and EGFR/KRAS/ALK-negativePredicted survival for ADCs with ALK-positive and EGFR/KRAS/ALK-negative
Tab.2  Studies evaluating molecular classification of NSCLC
1 CapellettoE, Novello S. Emerging new agents for the management of patients with non-small cell lung cancer. Drugs 2012; 72(Suppl 1): 37-52
doi: 10.2165/1163028-S0-000000000-00000 pmid:22712796
2 Singhal S, Miller D, Ramalingam S, Sun SY. Gene expression profiling of non-small cell lung cancer. Lung Cancer 2008; 60(3): 313-324
doi: 10.1016/j.lungcan.2008.03.007 pmid:18440087
3 Travis WD, Brambilla E, Müller-Hermeling HK, Harris CC. Tumours of the lung. In: World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura , Thymus and Heart . Lyon: IARC Press, 2004:10
4 Lee HJ, Lee CH, Jeong YJ, Chung DH, Goo JM, Park CM, Austin JH. IASLC/ATS/ERS International Multidisciplinary Classification of Lung Adenocarcinoma: novel concepts and radiologic implications. J Thorac Imaging 2012; 27(6): 340-353
doi: 10.1097/RTI.0b013e3182688d62 pmid:23086014
5 Duncavage E, Goodgame B, Sezhiyan A, Govindan R, Pfeifer J. Use of microRNA expression levels to predict outcomes in resected stage I non-small cell lung cancer. J Thorac Oncol 2010; 5(11): 1755-1763
doi: 10.1097/JTO.0b013e3181f3909d pmid:20975375
6 National Cancer Institute. Director’s challenge: toward a molecular classification of tumors . http://grants.nih.gov/grants/guide/rfa-files/RFA-CA-98-027.html
7 Shibata T, Uryu S, Kokubu A, Hosoda F, Ohki M, Sakiyama T, Matsuno Y, Tsuchiya R, Kanai Y, Kondo T, Imoto I, Inazawa J, Hirohashi S. Genetic classification of lung adenocarcinoma based on array-based comparative genomic hybridization analysis: its association with clinicopathologic features. Clin Cancer Res 2005; 11(17): 6177-6185
doi: 10.1158/1078-0432.CCR-05-0293 pmid:16144918
8 Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, Richards WG, Sugarbaker DJ, Bueno R. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002; 62(17): 4963-4967
pmid:12208747
9 Nonami Y, Ohtuki Y, Sasaguri S. Study of the diagnostic difference between the clinical diagnostic criteria and results of immunohistochemical staining of multiple primary lung cancers. J Cardiovasc Surg (Torino) 2003; 44(5): 661-665
pmid:14735056
10 Arai J, Tsuchiya T, Oikawa M, Mochinaga K, Hayashi T, Yoshiura K, Tsukamoto K, Yamasaki N, Matsumoto K, Miyazaki T, Nagayasu T. Clinical and molecular analysis of synchronous double lung cancers. Lung Cancer 2012; 77(2): 281-287
doi: 10.1016/j.lungcan.2012.04.003 pmid:22560922
11 Girard N, Deshpande C, Azzoli CG, Rusch VW, Travis WD, Ladanyi M, Pao W. Use of epidermal growth factor receptor/Kirsten rat sarcoma 2 viral oncogene homolog mutation testing to define clonal relationships among multiple lung adenocarcinomas: comparison with clinical guidelines. Chest 2010; 137(1): 46-52
doi: 10.1378/chest.09-0325 pmid:19376842
12 Giordano TJ, Shedden KA, Schwartz DR, Kuick R, Taylor JM, Lee N, Misek DE, Greenson JK, Kardia SL, Beer DG, Rennert G, Cho KR, Gruber SB, Fearon ER, Hanash S. Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles. Am J Pathol 2001; 159(4): 1231-1238
doi: 10.1016/S0002-9440(10)62509-6 pmid:11583950
13 S?rensen JB, Hirsch FR, Gazdar A, Olsen JE. Interobserver variability in histopathologic subtyping and grading of pulmonary adenocarcinoma. Cancer 1993; 71(10): 2971-2976
doi: 10.1002/1097-0142(19930515)71:10<2971::AID-CNCR2820711014>3.0.CO;2-E pmid:8387872
14 Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 2001; 98(24): 13784-13789
doi: 10.1073/pnas.241500798 pmid:11707590
15 Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001; 98(24): 13790-13795
doi: 10.1073/pnas.191502998 pmid:11707567
16 Hosseinzadeh F, Ebrahimi M, Goliaei B, Shamabadi N. Classification of lung cancer tumors based on structural and physicochemical properties of proteins by bioinformatics models. PLoS ONE 2012; 7(7): e40017
doi: 10.1371/journal.pone.0040017 pmid:22829872
17 Coello MC, Luketich JD, Litle VR, Godfrey TE. Prognostic significance of micrometastasis in non-small-cell lung cancer. Clin Lung Cancer 2004; 5(4): 214-225
doi: 10.3816/CLC.2004.n.002 pmid:14967073
18 Xi L, Lyons-Weiler J, Coello MC, Huang X, Gooding WE, Luketich JD, Godfrey TE. Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin Cancer Res 2005; 11(11): 4128-4135
doi: 10.1158/1078-0432.CCR-04-2525 pmid:15930348
19 Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002; 8(8): 816-824
pmid:12118244
20 Takada M, Tada M, Tamoto E, Kawakami A, Murakawa K, Shindoh G, Teramoto K, Matsunaga A, Komuro K, Kanai M, Fujiwara Y, Shirata K, Nishimura N, Miyamoto M, Okushiba S, Kondo S, Hamada J, Katoh H, Yoshiki T, Moriuchi T. Prediction of lymph node metastasis by analysis of gene expression profiles in non-small cell lung cancer. J Surg Res 2004; 122(1): 61-69
doi: 10.1016/j.jss.2004.06.002 pmid:15522316
21 Wu K, House L, Liu W, Cho WC. Personalized targeted therapy for lung cancer. Int J Mol Sci 2012; 13(9): 11471-11496
doi: 10.3390/ijms130911471 pmid:23109866
22 Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 2010; 107(43): 18545-18550
doi: 10.1073/pnas.1010978107 pmid:20876136
23 M. G. Kris BEJ. D. J. Kwiatkowski. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC). Journal of Clinical Oncology, 2011 ASCO Annual Meeting Proceedings (Post-Meeting Edition) 2011; 29(18): CRA7506
24 Ausborn NL, Le QT, Bradley JD, Choy H, Dicker AP, Saha D, Simko J, Story MD, Torossian A, Lu B. Molecular profiling to optimize treatment in non-small cell lung cancer: a review of potential molecular targets for radiation therapy by the translational research program of the radiation therapy oncology group. Int J Radiat Oncol Biol Phys 2012; 83(4): e453-e464
doi: 10.1016/j.ijrobp.2012.01.056 pmid:22520478
25 Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S, McDermott U, Settleman J, Kobayashi S, Mark EJ, Rodig SJ, Chirieac LR, Kwak EL, Lynch TJ, Iafrate AJ. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009; 27(26): 4247-4253
doi: 10.1200/JCO.2009.22.6993 pmid:19667264
26 Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, Ladanyi M, Riely GJ. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 2011; 29(15): 2046-2051
doi: 10.1200/JCO.2010.33.1280 pmid:21483012
27 West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, Dennis PA, Otterson GA, Salgia R. A novel classification of lung cancer into molecular subtypes. PLoS ONE 2012; 7(2): e31906
doi: 10.1371/journal.pone.0031906 pmid:22363766
28 Yamauchi M, Yamaguchi R, Nakata A, Kohno T, Nagasaki M, Shimamura T, Imoto S, Saito A, Ueno K, Hatanaka Y, Yoshida R, Higuchi T, Nomura M, Beer DG, Yokota J, Miyano S, Gotoh N. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE 2012; 7(9): e43923
doi: 10.1371/journal.pone.0043923 pmid:23028479
29 Bunn PA Jr, Doebele RC. Genetic testing for lung cancer: reflex versus clinical selection. J Clin Oncol 2011; 29(15): 1943-1945
doi: 10.1200/JCO.2010.34.1974 pmid:21483017
30 Wan YW, Sabbagh E, Raese R, Qian Y, Luo D, Denvir J, Vallyathan V, Castranova V, Guo NL. Hybrid models identified a 12-gene signature for lung cancer prognosis and chemoresponse prediction. PLoS ONE 2010; 5(8): e12222
doi: 10.1371/journal.pone.0012222 pmid:20808922
31 Chen DT, Hsu YL, Fulp WJ, Coppola D, Haura EB, Yeatman TJ, Cress WD. Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer. J Natl Cancer Inst 2011; 103(24): 1859-1870
doi: 10.1093/jnci/djr420 pmid:22157961
32 Kim ES, Herbst RS, Wistuba II, Lee JJ, Blumenschein GR Jr, Tsao A, Stewart DJ, Hicks ME, Erasmus J Jr, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011; 1(1): 44-53
doi: 10.1158/2159-8274.CD-10-0010 pmid:22586319
33 Hou J, Lambers M, den Hamer B, den Bakker MA, Hoogsteden HC, Grosveld F, Hegmans J, Aerts J, Philipsen S. Expression profiling-based subtyping identifies novel non-small cell lung cancer subgroups and implicates putative resistance to pemetrexed therapy. J Thorac Oncol 2012; 7(1): 105-114
doi: 10.1097/JTO.0b013e3182352a45 pmid:22134068
34 Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, McCarthy S, Cantor AB, Scuto A, Li C, Zhang S, Jove R, Yeatman T. Prediction of radiation sensitivity using a gene expression classifier. Cancer Res 2005; 65(16): 7169-7176
doi: 10.1158/0008-5472.CAN-05-0656 pmid:16103067
35 Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Torres-Roca JF. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 2009; 75(2): 497-505
doi: 10.1016/j.ijrobp.2009.05.056 pmid:19735874
36 Flehinger BJ, Kimmel M, Melamed MR. The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest 1992; 101(4): 1013-1018
doi: 10.1378/chest.101.4.1013 pmid:1313349
37 Larsen JE, Pavey SJ, Passmore LH, Bowman RV, Hayward NK, Fong KM. Gene expression signature predicts recurrence in lung adenocarcinoma. Clin Cancer Res 2007; 13(10): 2946-2954
doi: 10.1158/1078-0432.CCR-06-2525 pmid:17504995
38 Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA Jr, Marks JR, Dressman HK, West M, Nevins JR. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439(7074): 353-357
doi: 10.1038/nature04296 pmid:16273092
39 Tomida S, Takeuchi T, Shimada Y, Arima C, Matsuo K, Mitsudomi T, Yatabe Y, Takahashi T. Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J Clin Oncol 2009; 27(17): 2793-2799
doi: 10.1200/JCO.2008.19.7053 pmid:19414676
40 Lu Y, Wang L, Liu P, Yang P, You M. Gene-expression signature predicts postoperative recurrence in stage I non-small cell lung cancer patients. PLoS ONE 2012; 7(1): e30880
doi: 10.1371/journal.pone.0030880 pmid:22292069
41 Guo L, Ma Y, Ward R, Castranova V, Shi X, Qian Y. Constructing molecular classifiers for the accurate prognosis of lung adenocarcinoma. Clin Cancer Res 2006; 12(11 Pt 1): 3344-3354
doi: 10.1158/1078-0432.CCR-05-2336 pmid:16740756
42 Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, Yang P, Sun Z, Szoke J, Gerald WL, Watson M, Govindan R, You M. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006; 3(12): e467
doi: 10.1371/journal.pmed.0030467 pmid:17194181
43 Endoh H, Tomida S, Yatabe Y, Konishi H, Osada H, Tajima K, Kuwano H, Takahashi T, Mitsudomi T. Prognostic model of pulmonary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time reverse transcriptase polymerase chain reaction. J Clin Oncol 2004; 22(5): 811-819
doi: 10.1200/JCO.2004.04.109 pmid:14990636
44 Sun Z, Wigle DA, Yang P. Non-overlapping and non-cell-type-specific gene expression signatures predict lung cancer survival. J Clin Oncol 2008; 26(6): 877-883
doi: 10.1200/JCO.2007.13.1516 pmid:18281660
45 Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JM, Macdonald J, Thomas D, Moskaluk C, Wang Y, Beer DG. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res 2006; 66(15): 7466-7472
doi: 10.1158/0008-5472.CAN-06-1191 pmid:16885343
46 Roepman P, Jassem J, Smit EF, Muley T, Niklinski J, van de Velde T, Witteveen AT, Rzyman W, Floore A, Burgers S, Giaccone G, Meister M, Dienemann H, Skrzypski M, Kozlowski M, Mooi WJ, van Zandwijk N. An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer. Clin Cancer Res 2009; 15(1): 284-290
doi: 10.1158/1078-0432.CCR-08-1258 pmid:19118056
47 Seike M, Yanaihara N, Bowman ED, Zanetti KA, Budhu A, Kumamoto K, Mechanic LE, Matsumoto S, Yokota J, Shibata T, Sugimura H, Gemma A, Kudoh S, Wang XW, Harris CC. Use of a cytokine gene expression signature in lung adenocarcinoma and the surrounding tissue as a prognostic classifier. J Natl Cancer Inst 2007; 99(16): 1257-1269
doi: 10.1093/jnci/djm083 pmid:17686824
48 Lu Y, Govindan R, Wang L, Liu PY, Goodgame B, Wen W, Sezhiyan A, Pfeifer J, Li YF, Hua X, Wang Y, Yang P, You M. MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer. Carcinogenesis 2012; 33(5): 1046-1054
doi: 10.1093/carcin/bgs100 pmid:22331473
49 Lau SK, Boutros PC, Pintilie M, Blackhall FH, Zhu CQ, Strumpf D, Johnston MR, Darling G, Keshavjee S, Waddell TK, Liu N, Lau D, Penn LZ, Shepherd FA, Jurisica I, Der SD, Tsao MS. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol 2007; 25(35): 5562-5569
doi: 10.1200/JCO.2007.12.0352 pmid:18065728
50 Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, Cheng CL, Wang CH, Terng HJ, Kao SF, Chan WK, Li HN, Liu CC, Singh S, Chen WJ, Chen JJ, Yang PC. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007; 356(1): 11-20
doi: 10.1056/NEJMoa060096 pmid:17202451
51 Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S, Watanabe S, Sakamoto H, Kumamoto K, Takenoshita S, Gotoh N, Mizuno H, Sarai A, Kawano S, Yamaguchi R, Miyano S, Yokota J. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res 2012; 72(1): 100-111
doi: 10.1158/0008-5472.CAN-11-1403 pmid:22080568
52 Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, Raso G, Girard L, Erickson HS, Roth J, Heymach JV, Moran C, Danenberg K, Minna JD, Wistuba II. Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients. Clin Cancer Res 2011; 17(17): 5705-5714
doi: 10.1158/1078-0432.CCR-11-0196 pmid:21742808
53 Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D, Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B, Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J, Zakowski M, Rusch V, Kris M, Viale A, Motoi N, Travis W, Conley B, Seshan VE, Meyerson M, Kuick R, Dobbin KK, Lively T, Jacobson JW, Beer DG, Shedden K, Taylor JMG, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D, Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B, Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J, Zakowski M, Rusch V, Kris M, Viale A, Motoi N, Travis W, Conley B, Seshan VE, Meyerson M, Kuick R, Dobbin KK, Lively T, Jacobson JW, Beer DG. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008; 14(8): 822-827
doi: 10.1038/nm.1790 pmid:18641660
54 Song D, Zhukov TA, Markov O, Qian W, Tockman MS. A new method for lung cancer prognosis via centrosome image feature analysis. Anal Quant Cytol Histol 2012; 34(4): 180-188
pmid:23016464
55 Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36
doi: 10.1093/carcin/bgp220 pmid:19752007
56 You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22(1): 9-20
doi: 10.1016/j.ccr.2012.06.008 pmid:22789535
57 Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 2004; 4(9): 707-717
doi: 10.1038/nrc1432 pmid:15343277
58 Shinjo K, Okamoto Y, An B, Yokoyama T, Takeuchi I, Fujii M, Osada H, Usami N, Hasegawa Y, Ito H, Hida T, Fujimoto N, Kishimoto T, Sekido Y, Kondo Y. Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 2012; 33(7): 1277-1285
doi: 10.1093/carcin/bgs154 pmid:22532250
59 Ehrich M, Field JK, Liloglou T, Xinarianos G, Oeth P, Nelson MR, Cantor CR, van den Boom D. Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Res 2006; 66(22): 10911-10918
doi: 10.1158/0008-5472.CAN-06-0400 pmid:17108128
60 Baffa R, Fassan M, Volinia S, O’Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 2009; 219(2): 214-221
doi: 10.1002/path.2586 pmid:19593777
61 Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9(3): 189-198
doi: 10.1016/j.ccr.2006.01.025 pmid:16530703
62 Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A, Barshack I. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 2008; 26(4): 462-469
doi: 10.1038/nbt1392 pmid:18362881
63 Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, Wang E. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010; 16(2): 430-441
doi: 10.1158/1078-0432.CCR-09-1736 pmid:20068076
64 Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, Wan J, Zhou F, Shao K, Sun Y, Wu J, Zhang X, Qiu B, Li N, Shi S, Feng X, Zhao S, Wang Z, Zhao X, Chen Z, Mitchelson K, Cheng J, Guo Y, He J. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. Clin Cancer Res 2011; 17(21): 6802-6811
doi: 10.1158/1078-0432.CCR-11-0419 pmid:21890451
65 Bishop JA, Benjamin H, Cholakh H, Chajut A, Clark DP, Westra WH. Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 2010; 16(2): 610-619
doi: 10.1158/1078-0432.CCR-09-2638 pmid:20068099
66 Del Vescovo V, Cantaloni C, Cucino A, Girlando S, Silvestri M, Bragantini E, Fasanella S, Cuorvo LV, Palma PD, Rossi G, Papotti M, Pelosi G, Graziano P, Cavazza A, Denti MA, Barbareschi M. miR-205 Expression levels in nonsmall cell lung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas. Am J Surg Pathol 2011; 35(2): 268-275
doi: 10.1097/PAS.0b013e3182068171 pmid:21263248
67 Kikuchi T, Carbone DP. Proteomics analysis in lung cancer: challenges and opportunities. Respirology 2007; 12(1): 22-28
doi: 10.1111/j.1440-1843.2006.00957.x pmid:17207021
68 Tacha D, Yu C, Bremer R, Qi W, Haas T. A 6-antibody panel for the classification of lung adenocarcinoma versus squamous cell carcinoma. Appl Immunohistochem Mol Morphol 2012; 20(3): 201-207
doi: 10.1097/PAI.0b013e31823d7f0e pmid:22498669
69 Anagnostou VK, Dimou AT, Botsis T, Killiam EJ, Gustavson MD, Homer RJ, Boffa D, Zolota V, Dougenis D, Tanoue L, Gettinger SN, Detterbeck FC, Syrigos KN, Bepler G, Rimm DL. Molecular classification of nonsmall cell lung cancer using a 4-protein quantitative assay. Cancer 2012; 118(6): 1607-1618
doi: 10.1002/cncr.26450 pmid:22009766
70 Janssen-Heijnen ML, Coebergh JW. The changing epidemiology of lung cancer in Europe. Lung Cancer 2003; 41(3): 245-258
doi: 10.1016/S0169-5002(03)00230-7 pmid:12928116
71 Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res 2012; 18(9): 2443-2451
doi: 10.1158/1078-0432.CCR-11-2370 pmid:22407829
72 Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, Chu A, Collisson EA, Cope L, Creighton CJ, Getz G, Herman JG, Johnson BE, Kucherlapati R, Ladanyi M, Maher CA, Robertson G, Sander C, Shen R, Sinha R, Sivachenko A, Thomas RK, Travis WD, Tsao MS, Weinstein JN, Wigle DA, Baylin SB, Govindan R, Meyerson M. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489(7417): 519-525
doi: 10.1038/nature11404 pmid:22960745
73 Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, Brace LE, Woods BA, Lin W, Zhang J, Deng X, Lim SM, Heynck S, Peifer M, Simard JR, Lawrence MS, Onofrio RC, Salvesen HB, Seidel D, Zander T, Heuckmann JM, Soltermann A, Moch H, Koker M, Leenders F, Gabler F, Querings S, Ansén S, Brambilla E, Brambilla C, Lorimier P, Brustugun OT, Helland A, Petersen I, Clement JH, Groen H, Timens W, Sietsma H, Stoelben E, Wolf J, Beer DG, Tsao MS, Hanna M, Hatton C, Eck MJ, Janne PA, Johnson BE, Winckler W, Greulich H, Bass AJ, Cho J, Rauh D, Gray NS, Wong KK, Haura EB, Thomas RK, Meyerson M. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 2011; 1(1): 78-89
doi: 10.1158/2159-8274.CD-11-0005 pmid:22328973
74 Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM, Ullrich RT, Menon R, Maier S, Soltermann A, Moch H, Wagener P, Fischer F, Heynck S, Koker M, Sch?ttle J, Leenders F, Gabler F, Dabow I, Querings S, Heukamp LC, Balke-Want H, Ansén S, Rauh D, Baessmann I, Altmüller J, Wainer Z, Conron M, Wright G, Russell P, Solomon B, Brambilla E, Brambilla C, Lorimier P, Sollberg S, Brustugun OT, Engel-Riedel W, Ludwig C, Petersen I, S?nger J, Clement J, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D, Cappuzzo F, Ligorio C, Damiani S, Hallek M, Beroukhim R, Pao W, Klebl B, Baumann M, Buettner R, Ernestus K, Stoelben E, Wolf J, Nürnberg P, Perner S, Thomas RK. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2010; 2(62): 62ra93
doi: 10.1126/scitranslmed.3001451 pmid:21160078
75 Belvedere O, Berri S, Chalkley R, Conway C, Barbone F, Pisa F, MacLennan K, Daly C, Alsop M, Morgan J, Menis J, Tcherveniakov P, Papagiannopoulos K, Rabbitts P, Wood HM. A computational index derived from whole-genome copy number analysis is a novel tool for prognosis in early stage lung squamous cell carcinoma. Genomics 2012; 99(1): 18-24
doi: 10.1016/j.ygeno.2011.10.006 pmid:22050995
76 Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson BE, J?nne PA, Miller VA, Pao W, Travis WD, Pass HI, Gabriel SB, Lander ES, Thomas RK, Garraway LA, Getz G, Meyerson M. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150(6): 1107-1120
doi: 10.1016/j.cell.2012.08.029 pmid:22980975
77 Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, Yu SB, Kim J, Lee ER, Kang CH, Park IK, Rhee H, Lee SH, Kim JI, Kang JH, Kim YT. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012; 22(11): 2109-2119
doi: 10.1101/gr.145144.112 pmid:22975805
78 Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, J?nne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012; 18(3): 382-384
doi: 10.1038/nm.2673 pmid:22327622
79 Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012; 22(3): 436-445
doi: 10.1101/gr.133645.111 pmid:22194472
80 Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012; 18(3): 375-377
doi: 10.1038/nm.2644 pmid:22327624
81 Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J, Chen K, Walker J, McDonald S, Bose R, Ornitz D, Xiong D, You M, Dooling DJ, Watson M, Mardis ER, Wilson RK. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012; 150(6): 1121-1134
doi: 10.1016/j.cell.2012.08.024 pmid:22980976
82 Mardis ER. Anticipating the 1,000 dollar genome. Genome Biol 2006; 7(7): 112
doi: 10.1186/gb-2006-7-7-112 pmid:17224040
83 Mardis ER. The $1,000 genome, the $100,000 analysis? Genome Med 2010; 2(11): 84
doi: 10.1186/gm205 pmid:21114804
84 Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448(7153): 561-566
doi: 10.1038/nature05945 pmid:17625570
85 Bang YJ. Treatment of ALK-positive non-small cell lung cancer. Arch Pathol Lab Med 2012; 136(10): 1201-1204
doi: 10.5858/arpa.2012-0246-RA pmid:23020724
86 Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med 2011; 17(3): 297-303
doi: 10.1038/nm.2323 pmid:21383744
[1] Yaru Tian, Hairong Tian, Xiaoyang Zhai, Hui Zhu, Jinming Yu. Bevacizumab in combination with pemetrexed and platinum for elderly patients with advanced non-squamous non-small-cell lung cancer: a retrospective analysis[J]. Front. Med., 2022, 16(4): 610-617.
[2] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[3] Qi Wang. Individualized medicine, health medicine, and constitutional theory in Chinese medicine[J]. Front Med, 2012, 6(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed