Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2014, Vol. 8 Issue (1) : 79-83     DOI: 10.1007/s11684-014-0314-6
REVIEW |
Regulation and function of histone acetyltransferase MOF
Yang Yang, Xiaofei Han, Jingyun Guan, Xiangzhi Li()
Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, China
Download: PDF(146 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells.

Keywords MOF      histone acetyltransferase      DNA damage repair      tumorigenesis      embryonic stem cells     
Corresponding Authors: Li Xiangzhi,Email:xiangzhi@sdu.edu.cn   
Issue Date: 26 April 2014
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0314-6     OR     http://academic.hep.com.cn/fmd/EN/Y2014/V8/I1/79
Fig.1  MOF is a HAT that acetylates chromatin mostly at histone H4 lysine 16 (H4K16).
Fig.2  MOF is required for ESC self-renewal and differentiation.
1 Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J 2004; 23(11): 2258–2268
doi: 10.1038/sj.emboj.7600235 pmid:15141166
2 Smith ER, Cayrou C, Huang R, Lane WS, C?té J, Lucchesi JC. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 2005; 25(21): 9175–9188
doi: 10.1128/MCB.25.21.9175-9188.2005 pmid:16227571
3 Li X, Wu L, Corsa CA, Kunkel S, Dou Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 2009; 36(2): 290–301
doi: 10.1016/j.molcel.2009.07.031 pmid:19854137
4 Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 2012; 13(2): 123–134
doi: 10.1038/nrg3124 pmid:22251873
5 Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 2009; 136(9): 1399–1410
doi: 10.1242/dev.029645 pmid:19363150
6 Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet 2005; 39(1): 615–651
doi: 10.1146/annurev.genet.39.073003.094210 pmid:16285873
7 Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 2005; 25(15): 6798–6810
doi: 10.1128/MCB.25.15.6798-6810.2005 pmid:16024812
8 Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 1997; 16(8): 2054–2060
doi: 10.1093/emboj/16.8.2054 pmid:9155031
9 Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK, Ludwig T, Pandita TK. The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 2008; 28(1): 397–409
doi: 10.1128/MCB.01045-07 pmid:17967868
10 Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, Min J, Dou Y. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 2010; 30(22): 5335–5347
doi: 10.1128/MCB.00350-10 pmid:20837706
11 Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005; 121(6): 873–885
doi: 10.1016/j.cell.2005.04.031 pmid:15960975
12 Thomas T, Dixon MP, Kueh AJ, Voss AK. Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 2008; 28(16): 5093–5105
doi: 10.1128/MCB.02202-07 pmid:18541669
13 Li X, Dou Y. New perspectives for the regulation of acetyltransferase MOF. Epigenetics 2010; 5(3): 185–188
doi: 10.4161/epi.5.3.11372 pmid:20305383
16 Li X, Li L, Pandey R, Byun JS, Gardner K, Qin Z, Dou Y. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell 2012; 11(2): 163–178
doi: 10.1016/j.stem.2012.04.023 pmid:22862943
17 Sun B, Guo S, Tang Q, Li C, Zeng R, Xiong Z, Zhong C, Ding J. Regulation of the histone acetyltransferase activity of hMOF via autoacetylation of Lys274. Cell Res 2011; 21(8): 1262–1266
doi: 10.1038/cr.2011.105 pmid:21691301
18 Yang C, Wu J, Sinha SH, Neveu JM, Zheng YG. Autoacetylation of the MYST lysine acetyltransferase MOF protein. J Biol Chem 2012; 287(42): 34917–34926
doi: 10.1074/jbc.M112.359356 pmid:22918831
19 Yuan H, Rossetto D, Mellert H, Dang WW, Srinivasan M, Johnson J, Hodawadekar S, Ding EC, Speicher K, Abshiru N, Perry R, Wu J, Yang C, Zheng YG, Speicher DW, Thibault P, Verreault A, Johnson FB, Berger SL, Sternglanz R, McMahon SB, C?té J, Marmorstein R. MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 2012; 31(1): 58–70
doi: 10.1038/emboj.2011.382 pmid:22020126
20 Lu L, Li L, Lv X, Wu XS, Liu DP, Liang CC. Modulations of hMOF autoacetylation by SIRT1 regulate hMOF recruitment and activities on the chromatin. Cell Res 2011; 21(8): 1182–1195
doi: 10.1038/cr.2011.71 pmid:21502975
21 Peng LR, Ling HB, Yuan ZG, Fang B, Bloom G, Fukasawa K, Koomen J, Chen JD, Lane WS, Seto E. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol 2012; 32(14): 2823–2836
doi: 10.1128/MCB.00496-12 pmid:22586264
22 Katoh H, Qin ZS, Liu RH, Wang LZ, Li WQ, Li X, Wu LP, Du ZW, Lyons R, Liu CG, Liu X, Dou Y, Zheng P, Liu Y. FOXP3 orchestrates H4K16 acetylation and H3K4 trimethylation for activation of multiple genes by recruiting MOF and causing displacement of PLU-1. Mol Cell 2011; 44(5): 770–784
doi: 10.1016/j.molcel.2011.10.012 pmid:22152480
23 Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK. Involvement of human MOF in ATM function. Mol Cell Biol 2005; 25(12): 5292–5305
doi: 10.1128/MCB.25.12.5292-5305.2005 pmid:15923642
24 Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, Cote J, Pandita TK. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 2010; 30(14): 3582–3595
doi: 10.1128/MCB.01476-09 pmid:20479123
25 Taipale M, Akhtar A. Chromatin mechanisms in Drosophila dosage compensation. Prog Mol Subcell Biol 2005; 38: 123–149
doi: 10.1007/3-540-27310-7_5 pmid:15881893
26 Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 2006; 24(6): 841–851
doi: 10.1016/j.molcel.2006.11.026 pmid:17189187
27 Mellert HS, Stanek TJ, Sykes SM, Rauscher FJ 3rd, Schultz DC, McMahon SB. Deacetylation of the DNA-binding domain regulates p53-mediated apoptosis. J Biol Chem 2011; 286(6): 4264–4270
doi: 10.1074/jbc.M110.184663 pmid:21148320
28 Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB. Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem 2009; 284(30): 20197–20205
doi: 10.1074/jbc.M109.026096 pmid:19494119
29 Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37(4): 391–400
doi: 10.1038/ng1531 pmid:15765097
30 Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, Thuerigen O, Sinn HP, Akhtar A, Lichter P. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer 2008; 122(6): 1207–1213
doi: 10.1002/ijc.23283 pmid:18058815
31 Patani N, Jiang WG, Newbold RF, Mokbel K. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res 2011; 31(12): 4115–4125
pmid:22199269
32 Liu B, Wei DP, Hu LN, Cui Ling. Expression and clinical significance of hMOF and P53 protein in cervical lesion. J Med West China (Xi Bu Yi Xue) 2011; 23(5): 817–819 (in Chinese)
33 Song JS, Chun SM, Lee JY, Kim DK, Kim YH, Jang SJ. The histone acetyltransferase hMOF is overexpressed in non-small cell lung carcinoma. Korean Journal of Pathology 2011; 45(4): 386–396
doi:10.4132/KoreanJPathol.2011.45.4.386
34 Kruse JP, Gu W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J Biol Chem 2009; 284(5): 3250–3263
doi: 10.1074/jbc.M805658200 pmid:19033443
35 Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 2011; 145(5): 692–706
doi: 10.1016/j.cell.2011.03.053 pmid:21596426
36 Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka IR. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011; 145(2): 183–197
doi: 10.1016/j.cell.2011.03.003 pmid:21477851
37 Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38(4): 431–440
doi: 10.1038/ng1760 pmid:16518401
38 Fazzio TG, Huff JT, Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 2008; 134(1): 162–174
doi: 10.1016/j.cell.2008.05.031 pmid:18614019
39 Lin W, Srajer G, Evrard YA, Phan HM, Furuta Y, Dent SY. Developmental potential of Gcn5(–/–) embryonic stem cells in vivo and in vitro. Dev Dyn 2007; 236(6): 1547–1557
doi: 10.1002/dvdy.21160 pmid:17440986
40 Zhong X, Jin Y. Critical roles of coactivator p300 in mouse embryonic stem cell differentiation and Nanog expression. J Biol Chem 2009; 284(14): 9168–9175
doi: 10.1074/jbc.M805562200 pmid:19150979
[1] Hai Wang,Qian Zhang,Xiangdong Fang. Transcriptomics and proteomics in stem cell research[J]. Front. Med., 2014, 8(4): 433-444.
[2] Fung Zhao, Eric W.-F. Lam. Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance[J]. Front Med, 2012, 6(4): 376-380.
[3] ZHANG Xufeng, YU Liang, LU Yi. Wnt/β-catenin signaling pathway and its role in hepatocellular carcinoma[J]. Front. Med., 2008, 2(3): 216-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed