Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (4) : 401-411    https://doi.org/10.1007/s11684-015-0415-x
REVIEW
Progress and perspectives of neural tissue engineering
Xiaosong Gu()
Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
 Download: PDF(1471 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Traumatic injuries to the nervous system lead to a common clinical problem with a quite high incidence and affect the patient’s quality of life. Based on a major challenge not yet addressed by current therapeutic interventions for these diseases, a novel promising field of neural tissue engineering has emerged, grown, and attracted increasing interest. This review provides a brief summary of the recent progress in the field, especially in combination with the research experience of the author’s group. Several important aspects related to tissue engineered nerves, including the theory on their construction, translation into the clinic, improvements in fabrication technologies, and the formation of a regenerative environment, are delineated and discussed. Furthermore, potential research directions for the future development of neural tissue engineering are suggested.

Keywords nerve injury      tissue engineering      nerve grafts     
Just Accepted Date: 11 September 2015   Online First Date: 13 October 2015    Issue Date: 26 November 2015
 Cite this article:   
Xiaosong Gu. Progress and perspectives of neural tissue engineering[J]. Front. Med., 2015, 9(4): 401-411.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0415-x
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I4/401
Fig.1  An innovative theory about the construction of tissue engineered nerves. (A) Schematic showing that a neural scaffold consists of a porous, biomaterial-based nerve guidance conduit (NGC) and intraluminal filaments. (B) Schematic showing the regeneration process of injured neurons with help of a neural scaffold, which allows vascularization from the nerve stump and trans-wall blood vessel infiltration to provide nutrition for Schwann cell migration and axonal extension and to facilitate reinnervation of target muscles. (C) Schematic showing that a neural scaffold protects and guides axonal regrowth and Schwann cell migration. (D) Schematic showing preferential reinnervation of basal lamina tubes in the distal nerve stump by corresponding motor, sensory, and sympathetic axons. (E) Schematic showing that chitooligosaccharides (COS) promote nerve regeneration and stimulate Schwann cell proliferation via the miRNA-27a/FOXO1 axis.
Fig.2  Repair of 50 mm-long median nerve defects in rhesus monkeys with marrow mesenchymal stem cell-containing, chitosan-based tissue engineered nerve grafts (TENFs). (A) The observation of finger function at 12 months post-surgery for TENG group (a and b) and non-grafted group (c and d). (B) The appearance and function of the thenar muscles observed at 12 months post-surgery for scaffold (a), TENG (b), autograft (c), and non-grafted (d) groups, in which arrows indicate the left, injured hand. (C) Gross view of the regenerated nerve-like tissue segment at 12 months post-surgery for scaffold (a), TENG (b), autograft (c), and non-grafted (d) groups. The arrow and arrowhead mark the proximal and distal coaptation, respectively. (D) CMAP examinations were performed at 12 months post-surgery. Representative recordings at the injured side in scaffold (a), TENG (b), and autograft (c) groups, respectively, or at the contralateral, uninjured side (d). Traces were recorded after stimulating the distal (upper) and proximal (lower) positions of the nerve trunk. Histograms respectively showing CMAP amplitudes (e) or motor nerve conduction velocities (f) detected at the injured side for scaffold, TENG, and autograft groups, as well as at the normal (contralateral uninjured) side. *P<0.05 versus normal side (on the corresponding distal or proximal position), and #P<0.05 versus autograft group. This Figure has been adapted from Ref. 35 with permission of Elsevier.
Fig.3  Bridging a 30 mm-long human median nerve gap in the distal forearm using a chitosan-based (chitosan/PGA) nerve graft. Intra-operative view (A) showing that the nerve graft (labeled with *) was implanted across a nerve gap between two nerve stumps (labeled with an arrow and arrowhead). Photographs (B−E) showing that functional recovery of target thenar muscles at 36 months after grafting enabled the injured hand to perform various actions, such as digital opposition of the thumb to the index and little fingers (B and C), coin picking (D), and handling of chopsticks (E). Representative electromyographic data depicting the compound muscle action potentials recorded on the right abductor pollicis of the patient at 36 months after grafting (F). This figure is adapted from Ref. 38 with permission from John Wiley & Sons, Inc.
Fig.4  Schematics showing benefits of a cell-derived extracellular matrix (ECM)-modified neural scaffold (nerve graft) for nerve regeneration. (A) Generation of cell-derived ECM-modified neural scaffolds. (B) Advantages of the ECM modifier within neural scaffolds. (C) Neuroprotective and neurotrophic effects of ECM-modified neural scaffolds.
Fig.5  Schematic showing the implications of a miRNA-based strategy in nerve injury and nerve regeneration. The indicated miRNAs have critical functions in neuronal survival, neurite outgrowth, and phenotype modulation in Schwann cells. Injection of miR-9 agomir or let-7 inhibitors into a nerve guidance conduit affects nerve regeneration.
1 Bhalala  OG, Srikanth  M, Kessler  JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 2013; 9(6): 328–339
https://doi.org/10.1038/nrneurol.2013.67 pmid: 23588363
2 Robinson  LR. Traumatic injury to peripheral nerves. Muscle Nerve 2000; 23(6): 863–873
https://doi.org/10.1002/(SICI)1097-4598(200006)23:6<863::AID-MUS4>3.0.CO;2-0 pmid: 10842261
3 Taylor  CA, Braza  D, Rice  JB, Dillingham  T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil 2008; 87(5): 381–385
https://doi.org/10.1097/PHM.0b013e31815e6370 pmid: 18334923
4 Battiston  B, Papalia  I, Tos  P, Geuna  S. Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol 2009; 87: 1–7
https://doi.org/10.1016/S0074-7742(09)87001-3 pmid: 19682630
5 Fitch  MT, Silver  J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 2008; 209(2): 294–301
https://doi.org/10.1016/j.expneurol.2007.05.014 pmid: 17617407
6 Filbin  MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003; 4(9): 703– 713
https://doi.org/10.1038/nrn1195 pmid: 12951563
7 Artico  M, Cervoni  L, Nucci  F, Giuffré  R. Birthday of peripheral nervous system surgery: the contribution of Gabriele Ferrara (1543–1627). Neurosurgery 1996; 39(2): 380–382, discussion 382–383
https://doi.org/10.1097/00006123-199608000-00030 pmid: 8832677
8 Chalfoun  CT, Wirth  GA, Evans  GR. Tissue engineered nerve constructs: where do we stand? J Cell Mol Med 2006; 10(2): 309–317
https://doi.org/10.1111/j.1582-4934.2006.tb00401.x pmid: 16796801
9 Deumens  R, Bozkurt  A, Meek  MF, Marcus  MA, Joosten  EA, Weis  J, Brook  GA. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 2010; 92(3): 245–276
https://doi.org/10.1016/j.pneurobio.2010.10.002 pmid: 20950667
10 Gu  X, Ding  F, Williams  DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35(24): 6143–6156
https://doi.org/10.1016/j.biomaterials.2014.04.064 pmid: 24818883
11 Gu  X, Ding  F, Yang  Y, Liu  J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2011; 93(2): 204–230
https://doi.org/10.1016/j.pneurobio.2010.11.002 pmid: 21130136
12 Schmidt  CE, Leach  JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 2003; 5(1): 293–347
https://doi.org/10.1146/annurev.bioeng.5.011303.120731 pmid: 14527315
13 Gu  X, Ding  F, Yang  Y, Liu  J, So  KF, Xu  XM. Chapter 5—Tissue engineering in peripheral nerve regeneration. In: So  KF, Xu  XM. Neural Regeneration. Oxford: Academic Press, 2015: 73–99
14 Jiang  X, Lim  SH, Mao  HQ, Chew  SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2010; 223(1): 86–101
https://doi.org/10.1016/j.expneurol.2009.09.009 pmid: 19769967
15 Williams  D. Essential Biomaterials Science. Cambridge: Cambridge University Press, 2014
16 Khaing  ZZ, Schmidt  CE. Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 2012; 519(2): 103–114
https://doi.org/10.1016/j.neulet.2012.02.027 pmid: 22366403
17 Guan  RG, Cipriano  AF, Zhao  ZY, Lock  J, Tie  D, Zhao  T, Cui  T, Liu  H. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications—alloy processing, microstructure, mechanical properties, and biodegradation. Mater Sci Eng C Mater Biol Appl 2013; 33(7): 3661–3669
https://doi.org/10.1016/j.msec.2013.04.054 pmid: 23910262
18 Iskandar  ME, Aslani  A, Liu  H. The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants. J Biomed Mater Res A 2013; 101(8): 2340–2354
https://doi.org/10.1002/jbm.a.34530 pmid: 23359521
19 Jeans  LA, Gilchrist  T, Healy  D. Peripheral nerve repair by means of a flexible biodegradable glass fibre wrap: a comparison with microsurgical epineurial repair. J Plast Reconstr Aesthet Surg 2007; 60(12): 1302–1308
https://doi.org/10.1016/j.bjps.2006.06.014 pmid: 18005921
20 Seil  JT, Webster  TJ. Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(6): 635–647
https://doi.org/10.1002/wnan.109 pmid: 20730786
21 Starritt  NE, Kettle  SAJ, Glasby  MA. Sutureless repair of the facial nerve using biodegradable glass fabric. Laryngoscope 2011; 121(8): 1614–1619
https://doi.org/10.1002/lary.21868 pmid: 21792949
22 Tavangarian  F, Li  Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram Int 2012; 38(8): 6075–6090
https://doi.org/10.1016/j.ceramint.2012.05.038
23 Veith  M, Aktas  OC, Lee  J, Miro  MM, Akkan  CK, Schafer  KH, Rauch  U. Biphasic nano-materials and applications in life sciences: Id Al/Al2o3 nanostructures for improved neuron cell culturing. In: Mathur  S, Shen  H. Nanostructured Materials and Systems: Ceramic Transactions. New Jersey: Wiley, 2010: 117–121
24 Cai  J, Peng  X, Nelson  KD, Eberhart  R, Smith  GM. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. J Biomed Mater Res A 2005; 75(2): 374–386
https://doi.org/10.1002/jbm.a.30432 pmid: 16088902
25 Chew  SY, Mi  R, Hoke  A, Leong  KW. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue engineering platform. Adv Funct Mater 2007; 17(8): 1288–1296
https://doi.org/10.1002/adfm.200600441 pmid: 18618021
26 de Ruiter  GC, Onyeneho  IA, Liang  ET, Moore  MJ, Knight  AM, Malessy  MJ, Spinner  RJ, Lu  L, Currier  BL, Yaszemski  MJ, Windebank  AJ. Methods for in vitro characterization of multichannel nerve tubes. J Biomed Mater Res A 2008; 84(3): 643–651
https://doi.org/10.1002/jbm.a.31298 pmid: 17635012
27 de Ruiter  GC, Spinner  RJ, Malessy  MJA, Moore  MJ, Sorenson  EJ, Currier  BL, Yaszemski  MJ, Windebank  AJ. Accuracy of motor axon regeneration across autograft, single-lumen, and multichannel poly(lactic-co-glycolic acid) nerve tubes. Neurosurgery 2008; 63(1): 144–153, discussion 153–155
https://doi.org/10.1227/01.NEU.0000335081.47352.78 pmid: 18728579
28 Hu  X, Huang  J, Ye  Z, Xia  L, Li  M, Lv  B, Shen  X, Luo  Z. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng Part A 2009; 15(11): 3297–3308
https://doi.org/10.1089/ten.tea.2009.0017 pmid: 19382873
29 Yao  L, Billiar  KL, Windebank  AJ, Pandit  A. Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng Part C Methods 2010; 16(6): 1585–1596
https://doi.org/10.1089/ten.tec.2010.0152 pmid: 20528663
30 Cao  H, Liu  T, Chew  SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 2009; 61(12): 1055–1064
https://doi.org/10.1016/j.addr.2009.07.009 pmid: 19643156
31 Spivey  EC, Khaing  ZZ, Shear  JB, Schmidt  CE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials 2012; 33(17): 4264–4276
https://doi.org/10.1016/j.biomaterials.2012.02.043 pmid: 22425024
32 Yuan  Y, Zhang  P, Yang  Y, Wang  X, Gu  X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 2004; 25(18): 4273–4278
https://doi.org/10.1016/j.biomaterials.2003.11.029 pmid: 15046917
33 Yang  Y, Liu  M, Gu  Y, Lin  S, Ding  F, Gu  X. Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol Int 2009; 33(3): 352–356
https://doi.org/10.1016/j.cellbi.2009.01.005 pmid: 19272331
34 Wang  Y, Zhao  Y, Sun  C, Hu  W, Zhao  J, Li  G, Zhang  L, Liu  M, Liu  Y, Ding  F, Yang  Y, Gu  X. Chitosan degradation products promote nerve regeneration by stimulating Schwann cell proliferation via miR-27a/FOXO1 axis. Mol Neurobiol 2014 Nov 18. [Epub ahead of print] doi: 10.1007/s12035-014-8968-2
35 Hu  N, Wu  H, Xue  C, Gong  Y, Wu  J, Xiao  Z, Yang  Y, Ding  F, Gu  X. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials 2013; 34(1): 100–111
https://doi.org/10.1016/j.biomaterials.2012.09.020 pmid: 23063298
36 Wang  X, Hu  W, Cao  Y, Yao  J, Wu  J, Gu  X. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 2005; 128( 8): 1897–1910
https://doi.org/10.1093/brain/awh517 pmid: 15872018
37 Fan  W, Gu  J, Hu  W, Deng  A, Ma  Y, Liu  J, Ding  F, Gu  X. Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery 2008; 28(4): 238–242
https://doi.org/10.1002/micr.20488 pmid: 18383350
38 Gu  J, Hu  W, Deng  A, Zhao  Q, Lu  S, Gu  X. Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. J Tissue Eng Regen Med 2012; 6(2): 163–168
https://doi.org/10.1002/term.407 pmid: 21370489
39 Jiao  H, Yao  J, Yang  Y, Chen  X, Lin  W, Li  Y, Gu  X, Wang  X. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials 2009; 30(28): 5004–5018
https://doi.org/10.1016/j.biomaterials.2009.05.059 pmid: 19540584
40 Wang  X, Li  Y, Gao  Y, Chen  X, Yao  J, Lin  W, Chen  Y, Liu  J, Yang  Y, Wang  X. Combined use of spinal cord-mimicking partition type scaffold architecture and neurotrophin-3 for surgical repair of completely transected spinal cord in rats. J Biomater Sci Polym Ed 2013; 24(8): 927–939
https://doi.org/10.1080/09205063.2012.727267 pmid: 23647249
41 Gu  X, Ding  F, Yang  Y, Liu  J. A tissue engineering strategy for peripheral nerve regeneration. Regenerative Medicine in China. Washington: Science/AAAS, 2012: Supplement 31–32
42 Hvistendahl  M. China’s push in tissue engineering. Science 2012; 338(6109): 900–902
https://doi.org/10.1126/science.338.6109.900 pmid: 23161989
43 Kehoe  S, Zhang  XF, Boyd  D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012; 43(5): 553–572
https://doi.org/10.1016/j.injury.2010.12.030 pmid: 21269624
44 Meek  MF, Coert  JH. US Food and Drug Administration /Conformit Europe— approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg 2008; 60(4): 466–472
pmid: 18437784
45 Han  S, Wang  B, Jin  W, Xiao  Z, Li  X, Ding  W, Kapur  M, Chen  B, Yuan  B, Zhu  T, Wang  H, Wang  J, Dong  Q, Liang  W, Dai  J. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2015; 41: 89–96
https://doi.org/10.1016/j.biomaterials.2014.11.031 pmid: 25522968
46 Li  X, Han  J, Zhao  Y, Ding  W, Wei  J, Han  S, Shang  X, Wang  B, Chen  B, Xiao  Z, Dai  J. Functionalized collagen scaffold neutralizing the myelin-inhibitory molecules promoted neurites outgrowth in vitro and facilitated spinal cord regeneration in vivo. ACS Appl Mater Interfaces 2015; 7(25): 13960–13971
https://doi.org/10.1021/acsami.5b03879 pmid: 26034998
47 Yang  Y, Gu  X, Tan  R, Hu  W, Wang  X, Zhang  P, Zhang  T. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Biotechnol Lett 2004; 26(23): 1793–1797
https://doi.org/10.1007/s10529-004-4611-z pmid: 15672216
48 Yang  YM, Hu  W, Wang  XD, Gu  XS. The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med 2007; 18(11): 2117–2121
https://doi.org/10.1007/s10856-007-3013-x pmid: 17619982
49 Yang  Y, Zhao  W, He  J, Zhao  Y, Ding  F, Gu  X. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Eur J Pharm Biopharm 2011; 79(3): 519–525
https://doi.org/10.1016/j.ejpb.2011.06.008 pmid: 21736941
50 Yang  Y, Chen  X, Ding  F, Zhang  P, Liu  J, Gu  X. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007; 28(9): 1643–1652
https://doi.org/10.1016/j.biomaterials.2006.12.004 pmid: 17188747
51 Yang  Y, Ding  F, Wu  J, Hu  W, Liu  W, Liu  J, Gu  X. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials 2007; 28(36): 5526–5535
https://doi.org/10.1016/j.biomaterials.2007.09.001 pmid: 17884161
52 Das  S, Sharma  M, Saharia  D, Sarma  KK, Sarma  MG, Borthakur  BB, Bora  U. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 2015; 62: 66–75
https://doi.org/10.1016/j.biomaterials.2015.04.047 pmid: 26026910
53 Li  A, Hokugo  A, Yalom  A, Berns  EJ, Stephanopoulos  N, McClendon  MT, Segovia  LA, Spigelman  I, Stupp  SI, Jarrahy  R. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials 2014; 35(31): 8780–8790
https://doi.org/10.1016/j.biomaterials.2014.06.049 pmid: 25064803
54 Cerri  F, Salvatore  L, Memon  D, Martinelli Boneschi  F, Madaghiele  M, Brambilla  P, Del Carro  U, Taveggia  C, Riva  N, Trimarco  A, Lopez  ID, Comi  G, Pluchino  S, Martino  G, Sannino  A, Quattrini  A. Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials 2014; 35(13): 4035–4045
https://doi.org/10.1016/j.biomaterials.2014.01.069 pmid: 24559639
55 Williams  DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol 2006; 24(1): 4–8
https://doi.org/10.1016/j.tibtech.2005.10.006 pmid: 16289395
56 Williams  DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29(20): 2941–2953
https://doi.org/10.1016/j.biomaterials.2008.04.023 pmid: 18440630
57 Williams  DF. The biomaterials conundrum in tissue engineering. Tissue Eng Part A 2014; 20(7-8): 1129–1131
https://doi.org/10.1089/ten.tea.2013.0769 pmid: 24417599
58 Cheng  Q, Yuan  Y, Sun  C, Gu  X, Cao  Z, Ding  F. Neurotrophic and neuroprotective actions of Achyranthes bidentata polypeptides on cultured dorsal root ganglia of rats and on crushed common peroneal nerve of rabbits. Neurosci Lett 2014; 562: 7–12
https://doi.org/10.1016/j.neulet.2013.12.015 pmid: 24361134
59 Shen  H, Yuan  Y, Ding  F, Hu  N, Liu  J, Gu  X. Achyranthes bidentata polypeptides confer neuroprotection through inhibition of reactive oxygen species production, Bax expression, and mitochondrial dysfunction induced by overstimulation of N-methyl-D-aspartate receptors. J Neurosci Res 2010; 88(3): 669–676
pmid: 19774671
60 Shen  H, Yuan  Y, Ding  F, Liu  J, Gu  X. The protective effects of Achyranthes bidentata polypeptides against NMDA-induced cell apoptosis in cultured hippocampal neurons through differential modulation of NR2A- and NR2B-containing NMDA receptors. Brain Res Bull 2008; 77(5): 274–281
https://doi.org/10.1016/j.brainresbull.2008.08.002 pmid: 18765272
61 Tang  X, Chen  YR, Gu  XS, Ding  F. Achyranthes bidentata Blume extract promotes neuronal growth in cultured embryonic rat hippocampal neurons. Prog Nat Sci 2009; 19(5): 549–555
https://doi.org/10.1016/j.pnsc.2008.08.008
62 Yuan  Y, Shen  H, Yao  J, Hu  N, Ding  F, Gu  X. The protective effects of Achyranthes bidentata polypeptides in an experimental model of mouse sciatic nerve crush injury. Brain Res Bull 2010; 81(1): 25–32
https://doi.org/10.1016/j.brainresbull.2009.07.013 pmid: 19646511
63 Lee  K, Silva  EA, Mooney  DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011; 8(55): 153–170
https://doi.org/10.1098/rsif.2010.0223 pmid: 20719768
64 Burdick  JA, Mauck  RL, Gorman  JH 3rd, Gorman  RC. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 2013; 5(176): 176ps4
https://doi.org/10.1126/scitranslmed.3003997 pmid: 23486777
65 McAllister  TN, Dusserre  N, Maruszewski  M, L’heureux  N. Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole? Regen Med 2008; 3(6): 925–937
https://doi.org/10.2217/17460751.3.6.925 pmid: 18947313
66 Ingber  D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem 1991; 47(3): 236–241
https://doi.org/10.1002/jcb.240470309 pmid: 1724246
67 Badylak  SF, Freytes  DO, Gilbert  TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 2009; 5(1): 1–13
https://doi.org/10.1016/j.actbio.2008.09.013 pmid: 18938117
68 Gu  Y, Zhu  J, Xue  C, Li  Z, Ding  F, Yang  Y, Gu  X, Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014; 35(7): 2253–2263
https://doi.org/10.1016/j.biomaterials.2010.08.040 pmid: 20869112
69 Han  Q, Jin  W, Xiao  Z, Ni  H, Wang  J, Kong  J, Wu  J, Liang  W, Chen  L, Zhao  Y, Chen  B, Dai  J. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 2010; 31(35): 9212–9220
https://doi.org/10.1016/j.biomaterials.2010.08.040 pmid: 20869112
70 Eacker  SM, Dawson  TM, Dawson  VL. Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 2009; 10(12): 837–841
pmid: 19904280
71 Fineberg  SK, Kosik  KS, Davidson  BL. MicroRNAs potentiate neural development. Neuron 2009; 64(3): 303–309
https://doi.org/10.1016/j.neuron.2009.10.020 pmid: 19914179
72 Wu  D, Murashov  AK. Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 2013; 4: 55
https://doi.org/10.3389/fphys.2013.00055 pmid: 23554595
73 Yu  B, Qian  T, Wang  Y, Zhou  S, Ding  G, Ding  F, Gu  X. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012; 40(20): 10356–10365
https://doi.org/10.1093/nar/gks750 pmid: 22917588
74 Yu  B, Zhou  S, Wang  Y, Ding  G, Ding  F, Gu  X. Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS ONE 2011; 6(9): e24612
https://doi.org/10.1371/journal.pone.0024612 pmid: 21931774
75 Yu  B, Zhou  S, Wang  Y, Qian  T, Ding  G, Ding  F, Gu  X. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012; 125(11): 2675–2683
https://doi.org/10.1242/jcs.098996 pmid: 22393241
76 Zhou  S, Yu  B, Qian  T, Yao  D, Wang  Y, Ding  F, Gu  X. Early changes of microRNAs expression in the dorsal root ganglia following rat sciatic nerve transection. Neurosci Lett 2011; 494(2): 89–93
https://doi.org/10.1016/j.neulet.2011.02.064 pmid: 21371527
77 Zhou  S, Zhang  S, Wang  Y, Yi  S, Zhao  L, Tang  X, Yu  B, Gu  X, Ding  F. miR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 2015; 586: 43–49
https://doi.org/10.1016/j.neulet.2014.12.006 pmid: 25484256
78 Li  S, Wang  X, Gu  Y, Chen  C, Wang  Y, Liu  J, Hu  W, Yu  B, Wang  Y, Ding  F, Liu  Y, Gu  X. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2015; 23(3): 423–433
https://doi.org/10.1038/mt.2014.220 pmid: 25394845
79 Zhou  S, Gao  R, Hu  W, Qian  T, Wang  N, Ding  G, Ding  F, Yu  B, Gu  X. miR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 2014; 127(5): 967–976
https://doi.org/10.1242/jcs.131672 pmid: 24413174
80 Zhou  S, Shen  D, Wang  Y, Gong  L, Tang  X, Yu  B, Gu  X, Ding  F. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS ONE 2012; 7(9): e44768
https://doi.org/10.1371/journal.pone.0044768 pmid: 23028614
81 Fricker  FR, Antunes-Martins  A, Galino  J, Paramsothy  R, La Russa  F, Perkins  J, Goldberg  R, Brelstaff  J, Zhu  N, McMahon  SB, Orengo  C, Garratt  AN, Birchmeier  C, Bennett  DL. Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination. Brain 2013; 136(7): 2279–2297
https://doi.org/10.1093/brain/awt148 pmid: 23801741
82 Napoli  I, Noon  LA, Ribeiro  S, Kerai  AP, Parrinello  S, Rosenberg  LH, Collins  MJ, Harrisingh  MC, White  IJ, Woodhoo  A, Lloyd  AC. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 2012; 73(4): 729–742
https://doi.org/10.1016/j.neuron.2011.11.031 pmid: 22365547
83 Navarro  X, Vivó  M, Valero-Cabré  A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82(4): 163–201
https://doi.org/10.1016/j.pneurobio.2007.06.005 pmid: 17643733
84 Raimondo  S, Fornaro  M, Tos  P, Battiston  B, Giacobini-Robecchi  MG, Geuna  S. Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 2011; 193(4): 334–340
https://doi.org/10.1016/j.aanat.2011.03.001 pmid: 21474294
[1] Bo Lei, Baolin Guo, Kunal J. Rambhia, Peter X. Ma. Hybrid polymer biomaterials for bone tissue regeneration[J]. Front. Med., 2019, 13(2): 189-201.
[2] Rui Shi, Yuelong Huang, Chi Ma, Chengai Wu, Wei Tian. Current advances for bone regeneration based on tissue engineering strategies[J]. Front. Med., 2019, 13(2): 160-188.
[3] Hengyun SUN, Wei LIU, Guangdong ZHOU, Wenjie ZHANG, Lei CUI, Yilin CAO. Tissue engineering of cartilage, tendon and bone[J]. Front Med, 2011, 5(1): 61-69.
[4] DONG Nianguo, SHI Jiawei, CHEN Si, HONG Hao, HU Ping. Current progress on scaffolds of tissue engineering heart valves[J]. Front. Med., 2008, 2(3): 229-234.
[5] GE Jian, LIU Jingbo. The stem cell and tissue engineering research in Chinese ophthalmology[J]. Front. Med., 2007, 1(1): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed