Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (4) : 444-456    https://doi.org/10.1007/s11684-015-0421-z
RESEARCH ARTICLE
Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling
Samuel Chege Gitau1,3,Xuelian Li1,Dandan Zhao1,Zhenfeng Guo1,Haihai Liang1,Ming Qian1,Lifang Lv1,Tianshi Li1,Bozhi Xu1,Zhiguo Wang2,Yong Zhang1,Chaoqian Xu1,Yanjie Lu1,2,Zhiming Du4,Hongli Shan1,*(),Baofeng Yang1,2,*()
1. Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
2. Institute of Cardiovascular Research, Harbin Medical University, Harbin 150081, China
3. Department of Pharmacy and Complementary Medicine, School of Health Sciences, Kenyatta University, P.O. BOX 43844-00100, Nairobi, Kenya
4. Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
 Download: PDF(1384 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg−1·d−1); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L−1) was treated with the human equivalent of low (10 or 100 µmol·L−1) and high (1000 µmol·L−1) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin.

Keywords aspirin      Akt      cardiac hypertrophy      GSK-3β      Wnt/β-catenin     
Corresponding Author(s): Hongli Shan,Baofeng Yang   
Just Accepted Date: 28 October 2015   Online First Date: 17 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Samuel Chege Gitau,Xuelian Li,Dandan Zhao, et al. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling[J]. Front. Med., 2015, 9(4): 444-456.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0421-z
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I4/444
Fig.1  Effect of aspirin on cardiac morphology and function. (A) Representative echocardiographic images of ventricular myocardium, including the B-mode (upper panel) and M-mode (lower panel) recordings. The number (n) of mice analyzed per group is given in Table 1. Aspirin (10 mg·kg−1·d−1) restored the TAC-induced decrease in chamber size and the increase in wall thickness. (B) Box and whisker plots summarizing the changes in the ejection fraction (% EF) and fractional shortening (% FS). Aspirin normalized cardiac function. The data were presented as mean±SEM; n = 6; #P<0.05 vs. TAC; * P<0.05 vs. Control. (C) Representative electron micrographs for the ultrastructural analysis of the ventricular myocardium. No tissue swelling occurred in the control group. By contrast, the non-treated TAC group displayed marked degenerative changes as indicated by swollen mitochondria with amorphous matrix densities, distended myofibrils, and irregular Z lines. However, the aspirin-treated group had fewer and smaller alterations; n = 3; magnification, 15 000×; HV, 80 kV; scale bar calibration, 2 µm. (D) Bar graph summarizing the heart weight (HW) normalized to body weight (BW) or tibia length (TL). The data were presented as mean±SEM; n is given in the text; ## P<0.0001 vs. TAC; * P<0.05 vs. Control. (E) Bar graph summarizing the measured left ventricular mass based on the M-mode echocardiography. The data were presented as mean±SEM; n = 6; # P<0.05 vs. TAC; * P<0.05 vs. Control. Control, sham-operated mice treated with vehicle (PBS+ 0.65% ethanol); TAC, TAC-operated mice treated with vehicle; Aspirin+ TAC, TAC-operated mice treated with 10 mg·kg−1·d−1 aspirin (human equivalent dose of 1 mg·kg−1·d−1).
Control (n = 6) TAC (n = 13) Aspirin+ TAC (n = 7)
mean SEM mean SEM *P mean SEM # P
LVAW; d mm 0.74 0.16 1.01 0.24 0.020 0.76 0.25 0.034
LVAW; s mm 1.07 0.27 1.39 0.31 0.045 1.08 0.29 0.042
LVID; d mm 3.74 0.47 3.23 0.46 0.035 3.69 0.43 0.040
LVID; s mm 2.71 0.55 2.02 0.46 0.010 2.69 0.59 0.010
LVPW; d mm 0.69 0.10 1.14 0.48 0.049 0.59 0.13 0.048
LVPW; s mm 0.98 0.17 1.37 0.38 0.029 0.91 0.24 0.009
LV Vol; d µl 60.95 16.72 43.12 13.79 0.023 58.61 15.26 0.030
LV Vol; s µl 28.84 13.27 14.24 7.27 0.005 28.58 13.91 0.005
Tab.1  Effects of aspirin (10 mg·kg−1·d−1) on cardiac function, as measured by echocardiography
Fig.2  Effects of aspirin on biomarkers of cardiac hypertrophy in the ventricular myocardium. (A) Real-time PCR analysis of ANP, BNP, andβ-MHC mRNA. (B) A western blot analysis of β-MHC protein (upper panel) and statistical analysis (lower panel). Aspirin (10 mg·kg−1·d−1) normalized the abnormal upregulation of the hypertrophic biomarker in vivo. The data were presented as mean±SEM; n = 3; #P<0.05 vs. TAC; *P<0.05 vs. Control. Control, sham-operated mice treated with vehicle (PBS+ 0.65% ethanol); TAC, TAC-operated mice treated with vehicle; aspirin+ TAC, TAC-operated mice treated with 10 mg·kg−1·d−1 aspirin (human equivalent dose of 1 mg·kg−1·d−1).
Fig.3  Effects of aspirin on biomarkers of VH in vitro. (A) Real-time PCR analysis of ANP, and BNP, and β-MHC mRNA levels in ANG II (10 nmol·L−1) induced the NRVM hypertrophy model. One-way ANOVA showed that aspirin normalized the abnormal upregulation of hypertrophic biomarkers in a dose-dependent manner. The data were presented as mean±SEM; n = 4 for each individual experiment; #P<0.05 vs. ANG II (10 nmol·L−1); *P<0.05 vs. Control. (B) Representative western blot analysis of β-MHC protein expression (upper panel) and the corresponding statistical analysis (lower panel). The data were presented as mean±SEM; n = 4 for each individual experiment; #P<0.05 vs. ANG II (10 nmol·L−1); *P<0.05 vs. Control. (C) Representative immunohistochemical staining of NRVM photographed by fluorescence microscopy (upper panel) and its statistical analysis (bottom panel). DAPI and α-actinin were used to stain the nuclei and cytoplasm, respectively. Aspirin (100 µmol·L−1)-treated NRVM showed reduced cell size compared to non-treated cells; 10 cells were scored per field. The data were presented as mean±SEM; neonatal rats per individual experiment, n = 3; #P<0.05 vs. ANG II (10 nmol·L−1); *P<0.05 vs. Control. NRVM, primary neonatal cardiomyocytes; Control, NRVM treated with vehicle (DMSO at a final concentration of<0.01%); ANG II (10 nmol·L−1), NRVM treated with ANG II alone; Aspirin+ ANG II, NRVM treated with aspirin (varying concentrations) + ANG II.
Fig.4  Effects of aspirin on Wnt/β-catenin expression. (A) Real-time PCR analysis of β-catenin mRNA expression in cardiac tissue (left) and NVRMs (right). One-way ANOVA showed aspirin treatment (10 mg·kg−1·d−1) significantly reduced β-catenin expression in a dose dependent manner. The data were presented as mean±SEM; n = 3; #P<0.05 vs. TAC or ANG II 10 nmol·L−1; *P<0.05 vs. Control. (B) Representative western blot analysis of total β-catenin protein expression (upper panel) in cardiac tissue (left) and NRVMs (right), with the corresponding statistical analysis (lower panel). Treatment significantly reduced β-catenin protein expression; n = 3; #P<0.05 vs. TAC or ANG II 10 nmol·L−1; *P<0.05 vs. Control. (C) Representative western blot analysis of cytosolic and nuclear β-catenin protein expression in cardiac tissue (left) and the mean data of band density (right). The cytoplasmic and nuclear β-catenin fractions were normalized to GAPD and lamin B1, respectively. Aspirin significantly reduced the nuclear β-catenin expression in aspirin-treated and TAC-operated mice. The data were presented as mean±SEM; n = 3; #P<0.05 vs. TAC; *P<0.05 vs. Control. Control, sham-operated mice treated with vehicle (PBS+ 0.65% ethanol); TAC, TAC-operated mice treated with PBS+ 0.65% ethanol; Aspirin+ TAC, TAC-operated mice treated with aspirin 10 mg·kg−1·d−1 (human equivalent dose of 1 mg·kg−1·d−1).
Fig.5  Effects of aspirin and Dickkopf-1 on β-catenin and hypertrophy markers expression. (A) Real-time PCR analysis of β-catenin, ANP, BNP, and β-MHC mRNA. (B) Representative western blot analysis of total β-catenin protein expression in NRVM (upper panel) and mean data of band density (lower panel). NVRMs were incubated with or without aspirin (100 µmol·L−1) or with DKK-1 (200 nmol·L−1), a specific Wnt-β-catenin signaling inhibitor, in the presence or absence of ANG II (10 nmol·L−1). The anti-hypertrophic effects of aspirin and DKK were similar. The data were presented as mean±SEM, neonatal rats per individual experiment, n = 3, *P<0.05 vs. Control, #P<0.05 vs. Control. Control, NVRM treated with DMSO to a final concentration of<0.01%; ANG II (10 nmol·L−1), NRVM treated with ANG II alone; Aspirin+ ANG II, NRVM treated with aspirin (100 or 1000 µmol·L−1 concentrations) + ANG II; DKK+ ANG II, NVRM treated with Dickkopf (200 nmol·L−1) and ANG II.
Fig.6  Effects of aspirin on Akt and GSK-3β expression. (A) Representative western blot analysis of p-Akt (Ser473) protein expression in cardiac tissue (upper panel) and the mean data of band density (lower panel). Aspirin abrogated the abnormal upregulation of p-Akt (Ser473) protein expression. The data were presented as mean±SEM, n = 4; #P<0.05 vs. TAC, *P<0.05 vs. Control. (B) Representative western blot analysis of p-Akt (Ser473) protein expression in NVRM treated with aspirin (100 or 1000 µmol·L−1) or DKK-1 (200 nmol·L−1) in the presence or absence of ANG II (10 nmol·L−1; upper panel). The mean data of band density (lower panel) were presented as mean±SEM, n = 3; #P<0.05 vs. ANG II, *P<0.05 vs. Control. (C) Representative western blot analysis of the phosphorylated and inactive forms of GSK-3β (Ser9) protein levels in cardiac tissue (upper panel) and the mean data of band density (lower panel). Aspirin abrogated the abnormal upregulation of GSK-3β (Ser9) protein expression. The data were presented as mean±SEM, n = 4; #P<0.05 vs. TAC, * P<0.05 vs. Control. (D) Representative western blot analysis of p-GSK-3β (Ser9) protein expression in NVRM treated with aspirin (100 or 1000 µmol·L−1) or DKK-1 (200 nmol·L−1) in the presence or absence of ANG II (10 nmol·L−1; upper panel) and the mean data of band density (lower panel). The data were represented as mean±SEM, n = 3; # P<0.05 vs. ANG II (10 nmol·L−1), *P<0.05 vs. Control. NVRM, primary cultured neonatal cardiomyocytes; Control, sham-operated mice treated with vehicle (PBS+ 0.65% ethanol) or NVRM treated with DMSO to a final concentration of<0.01%; TAC, TAC-operated mice treated with PBS+ 0.65% ethanol; Aspirin+ TAC, TAC-operated mice treated with aspirin 10 mg·kg−1·d−1 (human equivalent dose of 1 mg·kg−1·d−1); ANG II (10 nmol·L−1), NRVM treated with ANG II alone; Aspirin+ ANG II, NRVM treated with aspirin (varying concentrations) + ANG II; DKK-1+ ANG II, NVRM treated with Dickkopf 1(200 nmol·L−1) and ANG II.
1 Yusuf  S, McKee  M. Documenting the global burden of cardiovascular disease: a major achievement but still a work in progress. Circulation 2014; 129(14): 1459–1462
https://doi.org/10.1161/CIRCULATIONAHA.114.008302 pmid: 24573353
2 Gjesdal  O, Bluemke  DA, Lima  JA. Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol 2011; 8(12): 673–685
https://doi.org/10.1038/nrcardio.2011.154 pmid: 22027657
3 Lavie  CJ, Patel  DA, Milani  RV, Ventura  HO, Shah  S, Gilliland  Y. Impact of echocardiographic left ventricular geometry on clinical prognosis. Prog Cardiovasc Dis 2014; 57(1): 3–9
https://doi.org/10.1016/j.pcad.2014.05.003 pmid: 25081397
4 Antithrombotic Trialists (ATT)’ Collaboration,  Baigent  C, Blackwell  L, Collins  R, Emberson  J, Godwin  J, Peto  R, Buring  J, Hennekens  C, Kearney  P, Meade  T, Patrono  C, Roncaglioni  MC, Zanchetti  A. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373(9678): 1849–1860  
https://doi.org/10.1016/S0140-6736(09)60503-1 pmid: 19482214
5 Gaglia  MA Jr, Clavijo  L. Cardiovascular pharmacology core reviews: aspirin. J Cardiovasc Pharmacol Ther 2013; 18(6): 505–513
https://doi.org/10.1177/1074248413503043 pmid: 24057863
6 Eikelboom  J, Hirsh  J, Spencer  F, Baglin  T, Weitz  J. Antiplatelet drugs: antithrombotic therapy and prevention of thrombosis. 9th ed. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141(Suppl 2): e89S–e119S
7 Patrono  C. Low-dose aspirin in primary prevention: cardioprotection, chemoprevention, both, or neither? Eur Heart J 2013; 34(44): 3403–3411
https://doi.org/10.1093/eurheartj/eht058 pmid: 23771843
8 Levy  D, Garrison  RJ, Savage  DD, Kannel  WB, Castelli  WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322(22): 1561–1566
https://doi.org/10.1056/NEJM199005313222203 pmid: 2139921
9 Dovizio  M, Tacconelli  S, Sostres  C, Ricciotti  E, Patrignani  P. Mechanistic and pharmacological issues of aspirin as an anticancer agent. Pharmaceuticals (Basel) 2012; 5(12): 1346–1371
https://doi.org/10.3390/ph5121346 pmid: 24281340
10 Yang  Z, Guo  L, Liu  D, Sun  L, Chen  H, Deng  Q, Liu  Y, Yu  M, Ma  Y, Guo  N, Shi  M. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget 2015; 6(7): 5072–5087
pmid: 25669984
11 Farag  M. Can aspirin and cancer prevention be ageless companions? J Clin Diagn Res 2015; 9(1): XE01–XE03
pmid: 25738074
12 Bergmann  MW. WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 2010; 107(10): 1198–1208
https://doi.org/10.1161/CIRCRESAHA.110.223768 pmid: 21071717
13 Lu  Z, Hunter  T. Wnt-independent β-catenin transactivation in tumor development. Cell Cycle 2004; 3(5): 571–573
https://doi.org/10.4161/cc.3.5.885 pmid: 15107603
14 Paikin  JS, Eikelboom  JW. Aspirin. Circulation 2012; 125(10): e439–e442 
https://doi.org/10.1161/CIRCULATIONAHA.111.046243 pmid: 22412097
15 Mehta  SR, Tanguay  JF, Eikelboom  JW, Jolly  SS, Joyner  CD, Granger  CB, Faxon  DP, Rupprecht  HJ, Budaj  A, Avezum  A, Widimsky  P, Steg  PG, Bassand  JP, Montalescot  G, Macaya  C, Di Pasquale  G, Niemela  K, Ajani  AE, White  HD, Chrolavicius  S, Gao  P, Fox  KA, Yusuf  S; CURRENT-OASIS 7 trial investigators. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 2010; 376(9748): 1233–1243
https://doi.org/10.1016/S0140-6736(10)61088-4 pmid: 20817281
16 Reagan-Shaw  S, Nihal  M, Ahmad  N. Dose translation from animal to human studies revisited. FASEB J 2008; 22(3): 659–661
https://doi.org/10.1096/fj.07-9574LSF pmid: 17942826
17 Houser  SR, Margulies  KB, Murphy  AM, Spinale  FG, Francis  GS, Prabhu  SD, Rockman  HA, Kass  DA, Molkentin  JD, Sussman  MA, Koch  WJ; American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012; 111(1): 131–150
https://doi.org/10.1161/RES.0b013e3182582523 pmid: 22595296
18 Lichte  P, Pfeifer  R, Kobbe  P, Tohidnezhad  M, Pufe  T, Almahmoud  K, Hildebrand  F, Pape  HC. Inhalative IL-10 treatment after bilateral femoral fractures affect pulmonary inflammation in mice. Ann Anat 2015; 200(5): 73–78
https://doi.org/10.1016/j.aanat.2015.02.005 pmid: 25801583
19 Li  C, Li  X, Gao  X, Zhang  R, Zhang  Y, Liang  H, Xu  C, Du  W, Zhang  Y, Liu  X, Ma  N, Xu  Z, Wang  L, Chen  X, Lu  Y, Ju  J, Yang  B, Shan  H. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 2014; 173(2): 268–276
https://doi.org/10.1016/j.ijcard.2014.02.035 pmid: 24631114
20 Sun  B, Huo  R, Sheng  Y, Li  Y, Xie  X, Chen  C, Liu  HB, Li  N, Li  CB, Guo  WT, Zhu  JX, Yang  BF, Dong  DL. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension 2013; 61(2): 352–360
https://doi.org/10.1161/HYPERTENSIONAHA.111.00562 pmid: 23248151
21 Rothstein  S, Simkins  T, Nuñez  JL. Response to neonatal anesthesia: effect of sex on anatomical and behavioral outcome. Neuroscience 2008; 152(4): 959–969
https://doi.org/10.1016/j.neuroscience.2008.01.027 pmid: 18329814
22 Bochner  F, Somogyi  AA, Wilson  KM. Bioinequivalence of four 100 mg oral aspirin formulations in healthy volunteers. Clin Pharmacokinet 1991; 21(5): 394–399
https://doi.org/10.2165/00003088-199121050-00006 pmid: 1773551
23 Rosenkranz  B, Frölich  JC. Plasma concentrations and anti-platelet effects after low dose acetylsalicylic acid. Prostaglandins Leukot Med 1985; 19(3): 289–300
https://doi.org/10.1016/0262-1746(85)90142-8 pmid: 3864170
24 Hermans  H, Swinnen  M, Pokreisz  P, Caluwe  E, Dymarkowski  S, Herregods  MC, Janssens  S, Herijgers  P. Murine pressure overload models: a 30-MHz look brings a whole new “sound” into data interpretation. J Appl Physiol (Bethesda, MD: 1985) 2014; 117(5): 563–571
25 Bode-Böger  SM, Böger  RH, Schubert  M, Frölich  JC. Effects of very low dose and enteric-coated acetylsalicylic acid on prostacyclin and thromboxane formation and on bleeding time in healthy subjects. Eur J Clin Pharmacol 1998; 54(9–10): 707–714
https://doi.org/10.1007/s002280050539 pmid: 9923572
26 Zheng  Q, Chen  P, Xu  Z, Li  F, Yi  XP. Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J Mol Histol 2013; 44(5): 565–573
https://doi.org/10.1007/s10735-013-9507-6 pmid: 23591738
27 Shanmugam  P, Valente  AJ, Prabhu  SD, Venkatesan  B, Yoshida  T, Delafontaine  P, Chandrasekar  B. Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. J Mol Cell Cardiol 2011; 50(6): 928–938
https://doi.org/10.1016/j.yjmcc.2011.02.012 pmid: 21376054
28 Fang  D, Hawke  D, Zheng  Y, Xia  Y, Meisenhelder  J, Nika  H, Mills  GB, Kobayashi  R, Hunter  T, Lu  Z. Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J Biol Chem  2007; 282(15): 11221–11229
https://doi.org/10.1074/jbc.M611871200 pmid: 17287208
29 Lincová  E, Hampl  A, Pernicová  Z, Starsíchová  A, Krcmár  P, Machala  M, Kozubík  A, Soucek  K. Multiple defects in negative regulation of the PKB/Akt pathway sensitise human cancer cells to the antiproliferative effect of non-steroidal anti-inflammatory drugs. Biochem Pharmacol 2009; 78(6): 561–572
https://doi.org/10.1016/j.bcp.2009.05.001 pmid: 19433066
30 Ferreira Filho  C, Abreu  LC, Valenti  VE, Ferreira  M, Meneghini  A, Silveira  JA, Riera  AR, Colombari  E, Murad  N, Santos-Silva  PR, Silva  LJ, Vanderlei  LC, Carvalho  TD, Ferreira  C. Anti-hypertensive drugs have different effects on ventricular hypertrophy regression. Clinics (Sao Paulo) 2010; 65(7): 723–728
https://doi.org/10.1590/S1807-59322010000700012 pmid: 20668631
31 Bisping  E, Wakula  P, Poteser  M, Heinzel  FR. Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 2014; 64(4): 293–305
https://doi.org/10.1097/FJC.0000000000000126 pmid: 25286359
32 Levy  D. Left ventricular hypertrophy. Epidemiological insights from the Framingham Heart Study. Drugs 1988; 35(Suppl 5): 1–5
https://doi.org/10.2165/00003495-198800355-00002 pmid: 2975214
33 Nagelschmitz  J, Blunck  M, Kraetzschmar  J, Ludwig  M, Wensing  G, Hohlfeld  T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin Pharmacol 2014; 6: 51–59 
https://doi.org/ 10.2147/CPAA.S47895 pmid: 24672263
34 Wu  R, Yin  D, Sadekova  N, Deschepper  CF, de Champlain  J, Girouard  H. Protective effects of aspirin from cardiac hypertrophy and oxidative stress in cardiomyopathic hamsters. Oxid Med Cell Longev 2012; 2012: 761710
https://doi.org/10.1155/2012/761710 pmid: 22829962
35 Wu  R, Laplante  MA, De Champlain  J. Prevention of angiotensin II-induced hypertension, cardiovascular hypertrophy and oxidative stress by acetylsalicylic acid in rats. J Hypertens 2004; 22(4): 793–801
https://doi.org/10.1097/00004872-200404000-00023 pmid: 15126922
36 Halvorsen  S, Andreotti  F, ten Berg  JM, Cattaneo  M, Coccheri  S, Marchioli  R, Morais  J, Verheugt  FW, De Caterina  R. Aspirin therapy in primary cardiovascular disease prevention: a position paper of the European Society of Cardiology working group on thrombosis. J Am Coll Cardiol 2014; 64(3): 319–327
https://doi.org/10.1016/j.jacc.2014.03.049 pmid: 25034070
37 Bae  SK, Seo  KA, Jung  EJ, Kim  HS, Yeo  CW, Shon  JH, Park  KM, Liu  KH, Shin  JG. Determination of acetylsalicylic acid and its major metabolite, salicylic acid, in human plasma using liquid chromatography-tandem mass spectrometry: application to pharmacokinetic study of Astrix in Korean healthy volunteers. Biomed Chromatogr 2008; 22(6): 590–595
https://doi.org/10.1002/bmc.973 pmid: 18254152
38 Clarke  RJ, Mayo  G, Price  P, FitzGerald  GA. Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. N Engl J Med 1991; 325(16): 1137–1141
https://doi.org/10.1056/NEJM199110173251605 pmid: 1891022
39 Rubak  P, Hardlei  TF, Würtz  M, Kristensen  SD, Hvas  AM. Low-dose acetylsalicylic acid therapy monitored with ultra high performance liquid chromatography. Clin Biochem 2013; 46(12): 988–992
https://doi.org/10.1016/j.clinbiochem.2013.04.007 pmid: 23608356
40 Sklepkiewicz  P, Shiomi  T, Kaur  R, Sun  J, Kwon  S, Mercer  B, Bodine  P, Schermuly  RT, George  I, Schulze  PC, D'Armiento  JM. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail 2015; 8(2): 362–372 
https://doi.org/10.1161/CIRCHEARTFAILURE.114.001274 pmid: 25669938
41 Fujishima  Y, Maeda  N, Matsuda  K, Komura  N, Hirata  A, Mori  T, Sekimoto  R, Tsushima  Y, Nishizawa  H, Funahashi  T, Shimomura  I. Effect of adiponectin on cardiac β-catenin signaling pathway under angiotensin II infusion. Biochem Biophys Res Commun 2014; 444(2): 224–229
https://doi.org/10.1016/j.bbrc.2014.01.043 pmid: 24462873
42 Aoyagi  T, Matsui  T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 2011; 17(18): 1818–1824
https://doi.org/10.2174/138161211796390976 pmid: 21631421
43 Ellison  GM, Waring  CD, Vicinanza  C, Torella  D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 2012; 98(1): 5–10
https://doi.org/10.1136/heartjnl-2011-300639 pmid: 21880653
44 Yoshida  T, Friehs  I, Mummidi  S, del Nido  PJ, Addulnour-Nakhoul  S, Delafontaine  P, Valente  AJ, Chandrasekar  B. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. J Mol Cell Cardiol 2014; 75(10): 141–151
https://doi.org/10.1016/j.yjmcc.2014.07.007 pmid: 25108227
45 Ishida  H, Kogaki  S, Narita  J, Ichimori  H, Nawa  N, Okada  Y, Takahashi  K, Ozono  K. LEOPARD-type SHP2 mutant Gln510Glu attenuates cardiomyocyte differentiation and promotes cardiac hypertrophy via dysregulation of Akt/GSK-3β/β-catenin signaling. Am J Physiol Heart Circ Physiol 2011; 301(4): H1531–H1539
https://doi.org/10.1152/ajpheart.00216.2011 pmid: 21803945
46 Askevold  ET, Aukrust  P, Nymo  SH, Lunde  IG, Kaasbøll  OJ, Aakhus  S, Florholmen  G, Ohm  IK, Strand  ME, Attramadal  H, Fiane  A, Dahl  CP, Finsen  AV, Vinge  LE, Christensen  G, Yndestad  A, Gullestad  L, Latini  R, Masson  S, Tavazzi  L, Ueland  T; GISSI-HF Investigators, Ueland T. The cardiokine secreted Frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med 2014; 275(6): 621–630
https://doi.org/10.1111/joim.12175 pmid: 24330105
[1] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[2] Zhuping Cao,Shiqi Liu,Jianhua Niu,Bing Wei,Jie Xu. Severe hepatoxicity caused by aspirin overdose: a case report[J]. Front. Med., 2015, 9(3): 388-391.
[3] Yuan ZHANG MD , Xiaoyan ZHANG MM , Yanhui LI MM , Xuan DU MM , Zehua WANG MD, PhD , Hongbo WANG MD , . Effects of phosphatidylinositol 3-kinase inhibitor on human cervical carcinoma cells [J]. Front. Med., 2009, 3(3): 341-346.
[4] Zhizhen LI, Fangping LI, Jianhong YE, Li YAN, Zuzhi FU. Effects of resistin on insulin signaling in endothelial cells[J]. Front Med Chin, 2009, 3(2): 136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed