Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (2) : 182-188    https://doi.org/10.1007/s11684-017-0529-4
RESEARCH ARTICLE |
Prevalence and drug resistance characteristics of carbapenem-resistant Enterobacteriaceae in Hangzhou, China
Yan Yang, Jian Chen, Di Lin, Xujian Xu, Jun Cheng(), Changgui Sun()
Department of Clinical Laboratory Science, The 117th Hospital of PLA, Hangzhou 310013, China
 Download: PDF(141 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the abuse of antimicrobial agents in developing countries, increasing number of carbapenem-resistant Enterobacteriaceae (CRE) attracted considerable public concern. A retrospective study was conducted based on 242 CRE strains from a tertiary hospital in Hangzhou, China to investigate prevalence and drug resistance characteristics of CRE in southeast China. Bacterial species were identified. Antimicrobial susceptibility was examined by broth microdilution method or epsilometer test. Resistant β-lactamase genes were identified by polymerase chain reaction and sequencing. Genotypes were investigated by phylogenetic analysis. Klebsiella pneumoniae and Escherichia coli were the most prevalent types of species, with occurrence in 71.9% and 21.9% of the strains, respectively. All strains exhibited high resistance (>70%) against β-lactam antibiotics, ciprofloxacin, trimethoprim–sulfamethoxazole, and nitrofurantoin but exhibited low resistance against tigecycline (0.8%) and minocycline (8.3%). A total of 123 strains harbored more than two kinds of β-lactamase genes. blaKPC-2, blaSHV-11, blaTEM-1, and blaCTX-M-14 were the predominant genotypes, with detection rates of 60.3%, 61.6%, 43.4%, and 16.5%, respectively, and were highly identical with reference sequences in different countries, indicating potential horizontal dissemination. IMP-4 was the most frequent class B metallo-lactamases in this study. In conclusion, continuous surveillance and effective prevention should be emphasized to reduce spread of CRE.

Keywords Enterobacteriaceae      carbapenem      β-lactamase genes      phylogenetic analysis     
Corresponding Authors: Jun Cheng,Changgui Sun   
Just Accepted Date: 02 June 2017   Online First Date: 10 July 2017    Issue Date: 02 April 2018
 Cite this article:   
Yan Yang,Jian Chen,Di Lin, et al. Prevalence and drug resistance characteristics of carbapenem-resistant Enterobacteriaceae in Hangzhou, China[J]. Front. Med., 2018, 12(2): 182-188.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0529-4
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I2/182
Antimicrobial agent Two major species in CRE strains Total strains
(n = 242)
Escherichia coli (n = 53) K. pneumoniae (n = 174) P value
Tigecycline 0 (0) 2 (1.1) 1.000 2 (0.8)
Minocycline 4 (7.5) 16 (9.2) 0.925 20 (8.3)
Amikacin 9 (17.0) 89 (51.1) 0.000* 102 (42.1)
Tobramycin 19 (35.8) 107 (61.5) 0.001* 132 (54.5)
Tetracycline 44 (83.0) 98 (56.3) 0.000* 151 (62.4)
Nitrofurantoin 3 (5.7) 161 (92.5) 0.000* 173 (71.49)
Trimethoprim–sulfamethoxazole 45 (84.9) 141 (81.0) 0.521 192 (79.3)
Ciprofloxacin 48 (90.6) 157 (90.2) 0.942 212 (87.6)
Cefoxitin 30 (56.6) 170 (97.7) 0.000* 215 (88.8)
Cefepime 38 (71.7) 167 (96.0) 0.000* 215 (88.8)
Ceftazidime 37 (69.8) 169 (97.1) 0.000* 218 (90.1)
Imipenem 47 (88.7) 165 (94.8) 0.207 224 (92.6)
Aztreonam 50 (94.3) 167 (96.0) 0.899 228 (94.2)
Ertapenem 52 (98.1) 166 (95.4) 0.629 233 (96.28)
Amoxicillin clavulanate 50 (94.3) 171 (98.3) 0.282 236 (97.5)
Cefotaxime 52 (98.1) 173 (99.4) 0.413 240 (99.2)
Tab.1  Antimicrobial resistance of 242 carbapenem-resistant Enterobacteriaceae (CRE) strains
Fig.1  The blue circle denotes the primary founder. The yellow circle denotes the subgroup founder. The pink number denotes the ST type detected in this study and in Zhejiang. Green numbers denote ST types detected only in this study. Circle area is proportional to abundance of ST.
1 Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55(11): 4943–4960
https://doi.org/10.1128/AAC.00296-11
2 Zhou T, Zhang X, Guo M, Ye J, Lu Y, Bao Q, Chi W. Phenotypic and molecular characteristics of carbapenem-non-susceptible Enterobacteriaceae from a teaching hospital in Wenzhou, southern China. Jpn J Infect Dis 2013; 66(2): 96–102
https://doi.org/10.7883/yoken.66.96
3 Pollett S, Miller S, Hindler J, Uslan D, Carvalho M, Humphries RM. Phenotypic and molecular characteristics of carbapenem-resistant Enterobacteriaceae in a health care system in Los Angeles, California, from 2011 to 2013. J Clin Microbiol 2014; 52(11): 4003–4009
https://doi.org/10.1128/JCM.01397-14
4 Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinovitch B, Shalit I, Carmeli Y. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 2011; 52(7): 848–855
https://doi.org/10.1093/cid/cir025
5 El-Herte RI, Kanj SS, Matar GM, Araj GF. The threat of carbapenem-resistant Enterobacteriaceae in Lebanon: an update on the regional and local epidemiology. J Infect Public Health 2012; 5(3): 233–243
https://doi.org/10.1016/j.jiph.2012.02.003
6 Xu Y, Gu B, Huang M, Liu H, Xu T, Xia W, Wang T. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000–2012 in Asia. J Thorac Dis 2015; 7(3): 376–385
7 Hu FP, Zhu DM, Wang F, Jiang XF, Yang Q, Huang WX, Jia B, Xu YH, Shen JL, Xu YC, Zhang XJ, Hu YJ, Ai XM, Zhang ZX, Ji P, Shan B, Du Y, Zhuo C, Su DH, Wang CQ, Wang AJ, Ni YX, Sun JY, Sun ZY, Chen ZJ, Wei LH, Wu L, Zhang H, Kong Q. CHINET surveillance of distribution and susceptibility of carbapenem-resistant Enterobacteriaceae isolates in 2010. Chin J Infect Chemother(Zhongguo Gan Ran Yu Hua Liao Za Zhi) 2013; 13(1): 1–7(in Chinese)
8 Dai W, Sun S, Yang P, Huang S, Zhang X, Zhang L. Characterization of carbapenemases, extended spectrum β-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infect Genet Evol 2013; 14:1–7
9 Rasmussen BA, Bush K, Keeney D, Yang Y, Hare R, O’Gara C, Medeiros AA. Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother 1996; 40(9): 2080–2086
10 Clinical and Laboratory Standards Institute. Performance standards for antimiembial susceptibility testing; twenty-fourth informational supplement. CLSI document M100–S25. Wayne, PA: CLSI, 2015
11 Zowawi HM, Sartor AL, Balkhy HH, Walsh TR, Al Johani SM, AlJindan RY, Alfaresi M, Ibrahim E, Al-Jardani A, Al-Abri S, Al Salman J, Dashti AA, Kutbi AH, Schlebusch S, Sidjabat HE, Paterson DL. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf cooperation council: dominance of OXA-48 and NDM producers. Antimicrob Agents Chemother 2014; 58(6): 3085–3090
https://doi.org/10.1128/AAC.02050-13
12 Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 2007; 20(3): 440–458
https://doi.org/10.1128/CMR.00001-07
13 Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65(3): 490–495
https://doi.org/10.1093/jac/dkp498
14 Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002; 40(6): 2153–2162
https://doi.org/10.1128/JCM.40.6.2153-2162.2002
15 Nordmann P, Poirel L, Carrer A, Toleman MA, Walsh TR. How to detect NDM-1 producers. J Clin Microbiol 2011; 49(2): 718–721
https://doi.org/10.1128/JCM.01773-10
16 Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012; 18(5): 263–272
https://doi.org/10.1016/j.molmed.2012.03.003
17 Castanheira M, Sader HS, Deshpande LM, Fritsche TR, Jones RN. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase- and metallo-β-lactamase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2008; 52(2): 570–573
https://doi.org/10.1128/AAC.01114-07
18 Kanj SS, Kanafani ZA. Current concepts in antimicrobial therapy against resistant Gram-negative organisms: extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc 2011; 86(3): 250–259
https://doi.org/10.4065/mcp.2010.0674
19 Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011; 35(5): 790–819
https://doi.org/10.1111/j.1574-6976.2011.00273.x
20 Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35(5): 820–855
https://doi.org/10.1111/j.1574-6976.2011.00277.x
21 Liu H, Wang Y, Wang G, Xing Q, Shao L, Dong X, Sai L, Liu Y, Ma L.The prevalence of Escherichia coli strains with extended spectrum beta-lactamases isolated in China. Front Microbiol 2015; 6:335
22 An S, Chen J, Wang Z, Wang X, Yan X, Li J, Chen Y, Wang Q, Xu X, Li J, Yang J, Wang H, Gao Z. Predominant characteristics of CTX-M-producing Klebsiella pneumoniae isolates from patients with lower respiratory tract infection in multiple medical centers in China. FEMS Microbiol Lett 2012; 332(2): 137–145
https://doi.org/10.1111/j.1574-6968.2012.02586.x
23 Abdallah HM, Wintermans BB, Reuland EA, Koek A, al Naiemi N, Ammar AM, Mohamed AA, Vandenbroucke-Grauls CM. Extended-spectrum β-lactamase- and carbapenemase-producing enterobacteriaceae isolated from Egyptian patients with suspected blood stream infection. PLoS One 2015; 10(5): e0128120
https://doi.org/10.1371/journal.pone.0128120
24 Memariani M, Najar Peerayeh S, Zahraei Salehi T, Shokouhi Mostafavi SK. Occurrence of SHV, TEM and CTX-M β-lactamase genes among enteropathogenic Escherichia coli strains isolated from children with diarrhea. Jundishapur J Microbiol 2015; 8(4): e15620
https://doi.org/10.5812/jjm.8(4)2015.15620
25 Giske CG, Fröding I, Hasan CM, Turlej-Rogacka A, Toleman M, Livermore D, Woodford N, Walsh TR. Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of blaNDM-1 in India, Sweden, and the United Kingdom. Antimicrob Agents Chemother 2012; 56(5): 2735–2738
https://doi.org/10.1128/AAC.06142-11
26 Pereira PS, de Araujo CFM, Seki LM, Zahner V, Carvalho-Assef APDA, Asensi MD. Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob Chemother 2013; 68(2): 312–316
https://doi.org/10.1093/jac/dks396
27 Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014; 22(12): 686–696
https://doi.org/10.1016/j.tim.2014.09.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed