Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (2) : 139-152    https://doi.org/10.1007/s11684-017-0551-6
REVIEW
Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions
Isabel Andia1(), Michele Abate2
1. Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
2. Department of Medicine and Science of Aging, University G. d’Annunzio, Chieti-Pescara, 66013 Chieti Scalo, Italy
 Download: PDF(271 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Current research on common musculoskeletal problems, including osteoarticular conditions, tendinopathies, and muscle injuries, focuses on regenerative translational medicine. Platelet-rich plasma therapies have emerged as a potential approach to enhance tissue repair and regeneration. Platelet-rich plasma application aims to provide supraphysiological concentrations of platelets and optionally leukocytes at injured/pathological tissues mimicking the initial stages of healing. However, the efficacy of platelet-rich plasma is controversial in chronic diseases because patients’ outcomes show partial improvements. Platelet-rich plasma can be customized to specific conditions by selecting the most appropriate formulation and timing for application or by combining platelet-rich plasma with synergistic or complementary treatments. To achieve this goal, researchers should identify and enhance the main mechanisms of healing. In this review, the interactions between platelet-rich plasma and healing mechanisms were addressed and research opportunities for customized treatment modalities were outlined. The development of combinational platelet-rich plasma treatments that can be used safely and effectively to manipulate healing mechanisms would be valuable and would provide insights into the processes involved in physiological healing and pathological failure.

Keywords regenerative medicine      joint conditions      muscle injuries      platelet rich plasma      tendinopathy      healing mechanisms     
Corresponding Author(s): Isabel Andia   
Just Accepted Date: 08 August 2017   Online First Date: 31 October 2017    Issue Date: 02 April 2018
 Cite this article:   
Isabel Andia,Michele Abate. Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions[J]. Front. Med., 2018, 12(2): 139-152.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0551-6
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I2/139
Fig.1  PRP secretome triggers several compartments. (A) Infiltrating immune compartment, which includes neutrophils, monocytes/macrophages, and T cells. PRP also influences macrophage polarization and pro-inflammatory (M1) versus pro-resolving (M2). (B) Several molecules contained in PRP modulate angiogenesis by influencing endothelial cell migration, proliferation, and cell sprouting. (C) PRP also influences the activities of resident cells located in the stromal compartment. PRP can stimulate tissue regeneration by modulating the crosstalk between infiltrating and local cells.
Author (year) PRP formulation Cell phenotype Biological effects
Tendon conditions [4753]
Boswell (2014) [47] L-PRP and PRP, different ratios platelet:leukocytes (370:1; 1490:1; 4821:1) Superficial profundus tendons from healthy horses Col1 ↑; Col3 ↓, COMP ↑, MMP-3=, MMP-13↓, IL-1β = Inverse correlation Col1 and platelet count
Cross (2015) [48] L-PRP versus PRP Diseased supraspinatus tendon cells
Moderately and severely degenerated (human)
Gene expression: Col1; Col3; Col1/col3 ↓ in moderately no differences in severely degenerated; COMP=; MMP-9 ↓ in severely degenerated= in moderately; MMP-13=; IL-1β ↓; TGF-β1 ↑
Protein secretion: IL-1β; IL-1Ra; IL-1β/IL-1Ra ↑in L-PRP; in moderately degenerated; IL-6= in moderately, ↓ in severely degenerated; IL-8= ; MMP-9 ↑; TGF-β1 ↑
Jo (2012) [49] PPP and PRP with different platelet concentrations (1000×103/µL vs. PPP) Tenocytes from patients with rotator cuff degenerative tears Col1 ↑ (Day 7 not Day 14), Col3 ↑(days 7 and 14) Col1/col3=; decorin ↑(day 14), tenascin ↑ (day 7 and 14), scleraxis ↑(day 14), GAGs ↑(day 14)
McCarrel (2012) [50] L-PRP versus PRP Flexor digitorum explants from adult horses Gene expression: Col1/Col3=; COMP=; MMP13=; IL-1β ↑; TNF-α ↑
Rubio-Azpeitia (2016) [51] High L-PRP low pure PRP and PPP Human tendon cells (healthy and pathologic) L-PRP and PRP enhanced migration and proliferation compared to PPP. PPP and PRP more anabolic than L-PRP. CTGF secretion reduced in L-PRP. L-PRP and PRP more proinflammatory than PPP
Zhang (2016) [52] L-PRP versus PRP Rabbit tendon stem cells Proliferation ↓; apoptosis ↑; TSC in L-PRP differentiated into non-tenocytes; mPGEs ↑; IL-1β ↑
Zhou (2015) [53] L-PRP versus PRP Rabbit tendon stem cells Gene and protein expression: MM-1↑; MMP-13↑; IL-1β↑ ; IL6↑ ; TNFα↑. PGE2↑. Col1↓; col3↓; α-SMA↓
Joint conditions [39,5663]
Assirelli (2015) [56] L-PRP, PRP and PPP Human synoviocytes (OA patients) Gene expression: IL-1β ↑; IL8 ↑; FGF-2 ↑; HGF↓; TIMP-4↓; HAS-1= ; HAS2= ; HAS3=
Braun (2014) [57] High L-PRP versus low pure PRP Human synoviocytes (OA) IL-1β ↑; IL6 ↑; TNF-α ↑
Carvallo (2014) [58] pPRP, L-PRP and PPP Human chondrocytes p-PRP stimulated aggrecan and Col2; L-PRP induced HAS2 and promoted catabolic activation
Freymann (2016) [59] ACP, PRP and human serum Human meniscus cells Serum enhanced Col1, Col2 and proteoglycan deposition; ACP enhanced aggrecan, COMP and biglycan expression
Jalowiec (2016) [60] Platelet concentration/µL in the gel: 106; 2×106; 10×106 Human mesenchymal stem cells Highest cell viability in PRP gels containing 106 platelets/µL
Kreuz (2015) [61] ACP, Regen, DrPRP (Double Spin) and PRP obtained by apheresis and by centrifugation Human subchondral mesenchymal precursor cells Different potential to stimulate chondrogenic differentiation, migration and proliferation. ACP, Regen and DrPRP produced fibrous tissue in contrast to the other PRPs
Osterman (2015) [62] L-PRP and PRP versus controls Human coculture cartilage and synovium (OA patients)
IL-1β pretreated
ACAN ↑; ADAMTS-5 ↓ (cartilage and synovium), Col1; VEGF; TIMP-1 ↓(cartilage and synovium)
No differences in the anti-inflammatory effects between the 2 formulations (nitric oxide production)
Pifer (2014) [39] High L-PRP versus low pure PRP Human ligament fibroblast
IL-1β pretreatment 24h/48h
MMP2 ↓; MMP3 ↓, MMP9 ↑
Rios (2015) [63] L-PRP versus PRP Horse cartilage explants pre-treated with LPS PDGF-BB↑; TGF-β1↑; TNF-α↑; IL-4 ↑;IL-1ra↑
Muscle injuries [30,68]
Denapoli (2016) [30] High L-PRP low pure PRP and PPP Rat muscle in vitro and in vivo EGF ↑; HGF ↑; IGF ↑; PDGF-AA, -BB both ↑; TGF-β1 ↑; VEGF ↑(only in L-PRP); sFlt-1 ↓
Mazzocca (2012) [68] Pure PRP (low and high platelets) L-PRP versus 2% and 10% FBS In vitro, human muscle, bone and tendon cells Cell proliferation: low platelet PRP increased proliferation of myocytes and tenocytes but not clear evidences favoring any of the tested formulations
Tab.1  Experimental studies comparing different PRP formulations
1 Andia I, Abate M. Platelet-rich plasma: underlying biology and clinical correlates. Regen Med 2013; 8(5): 645–658
https://doi.org/10.2217/rme.13.59 pmid: 23998756
2 Andia I, Latorre PM, Gomez MC, Burgos-Alonso N, Abate M, Maffulli N. Platelet-rich plasma in the conservative treatment of painful tendinopathy: a systematic review and meta-analysis of controlled studies. Br Med Bull 2014; 110(1): 99–115
https://doi.org/10.1093/bmb/ldu007 pmid: 24795364
3 Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev 2014; (4): CD010071
pmid: 24782334
4 Fitzpatrick J, Bulsara M, Zheng MH. The effectiveness of platelet-rich plasma in the treatment of tendinopathy: a meta-analysis of randomized controlled clinical trials. Am J Sports Med 2017; 45(1): 226–233
pmid: 27268111
5 Meheux CJ, McCulloch PC, Lintner DM, Varner KE, Harris JD. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review. Arthroscopy 2016; 32(3): 495–505
https://doi.org/10.1016/j.arthro.2015.08.005 pmid: 26432430
6 Zumstein MA, Rumian A, Thélu CÉ, Lesbats V, O’Shea K, Schaer M, Boileau P. SECEC Research Grant 2008 II: Use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study. J Shoulder Elbow Surg 2016; 25(1): 2–11
https://doi.org/10.1016/j.jse.2015.09.018 pmid: 26687471
7 Laudy AB, Bakker EW, Rekers M, Moen MH. Efficacy of platelet-rich plasma injections in osteoarthritis of the knee: a systematic review and meta-analysis. Br J Sports Med 2015; 49(10): 657–672
https://doi.org/10.1136/bjsports-2014-094036 pmid: 25416198
8 Keene DJ, Alsousou J, Willett K. How effective are platelet rich plasma injections in treating musculoskeletal soft tissue injuries? BMJ 2016; 352: i517
https://doi.org/10.1136/bmj.i517 pmid: 26888826
9 Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Goiriena JJ, Prosper F, Orive G, Padilla S. A new strategy to tackle severe knee osteoarthritis: combination of intra-articular and intraosseous injections of platelet rich plasma. Expert Opin Biol Ther 2016; 16(5): 627–643
https://doi.org/10.1517/14712598.2016.1157162 pmid: 26930117
10 Kelc R, Trapecar M, Gradisnik L, Rupnik MS, Vogrin M. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS One 2015; 10(2): e0117302
https://doi.org/10.1371/journal.pone.0117302 pmid: 25679956
11 Li H, Hicks JJ, Wang L, Oyster N, Philippon MJ, Hurwitz S, Hogan MV, Huard J. Customized platelet-rich plasma with transforming growth factor β1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials 2016; 87: 147–156
https://doi.org/10.1016/j.biomaterials.2016.02.017 pmid: 26923362
12 Andia I, Maffulli N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 2013; 9(12): 721–730
https://doi.org/10.1038/nrrheum.2013.141 pmid: 24080861
13 Yang H, Yuan C, Wu C, Qian J, Shi Q, Li X, Zhu X, Zou J. The role of TGF-β1/Smad2/3 pathway in platelet-rich plasma in retarding intervertebral disc degeneration. J Cell Mol Med 2016; 20(8): 1542–1549
https://doi.org/10.1111/jcmm.12847 pmid: 27061332
14 Ghasemzadeh M, Kaplan ZS, Alwis I, Schoenwaelder SM, Ashworth KJ, Westein E, Hosseini E, Salem HH, Slattery R, McColl SR, Hickey MJ, Ruggeri ZM, Yuan Y, Jackson SP. The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood 2013; 121(22): 4555–4566
https://doi.org/10.1182/blood-2012-09-459636 pmid: 23550035
15 Stålman A, Bring D, Ackermann PW. Chemokine expression of CCL2, CCL3, CCL5 and CXCL10 during early inflammatory tendon healing precedes nerve regeneration: an immunohistochemical study in the rat. Knee Surg Sports Traumatol Arthrosc 2015; 23(9): 2682–2689
https://doi.org/10.1007/s00167-014-3010-9 pmid: 24809505
16 Andia I, Rubio-Azpeitia E, Maffulli N. Platelet-rich plasma modulates the secretion of inflammatory/angiogenic proteins by inflamed tenocytes. Clin Orthop Relat Res 2015; 473(5): 1624–1634
https://doi.org/10.1007/s11999-015-4179-z pmid: 25670657
17 Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 2010; 184(9): 4810–4818
https://doi.org/10.4049/jimmunol.0901368 pmid: 20335529
18 Vasina EM, Cauwenberghs S, Feijge MA, Heemskerk JW, Weber C, Koenen RR. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis 2011; 2(11): e233
https://doi.org/10.1038/cddis.2011.115 pmid: 21956548
19 Vasina EM, Cauwenberghs S, Staudt M, Feijge MA, Weber C, Koenen RR, Heemskerk JW. Aging- and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release. Am J Blood Res 2013; 3(2): 107–123
pmid: 23675563
20 Hudgens JL, Sugg KB, Grekin JA, Gumucio JP, Bedi A, Mendias CL. Platelet-rich plasma activates proinflammatory signaling pathways and induces oxidative stress in tendon fibroblasts. Am J Sports Med 2016; 44(8): 1931–1940
https://doi.org/10.1177/0363546516637176 pmid: 27400714
21 Roh YH, Kim W, Park KU, Oh JH. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016; 5(2): 37–45
https://doi.org/10.1302/2046-3758.52.2000540 pmid: 26862077
22 Frelinger AL 3rdGerrits AJ ,, Garner AL, Torres AS, Caiafa A, Morton CA, Berny-Lang MA, Carmichael SL, Neculaes VB, Michelson AD. Modification of pulsed electric field conditions results in distinct activation profiles of platelet-rich plasma. PLoS One 2016; 11(8): e0160933
https://doi.org/10.1371/journal.pone.0160933 pmid: 27556645
23 Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kB inhibition via HGF. J Cell Physiol 2010; 225(3): 757–766
https://doi.org/10.1002/jcp.22274 pmid: 20568106
24 Zhang J, Middleton KK, Fu FH, Im HJ, Wang JH. HGF mediates the anti-inflammatory effects of PRP on injured tendons. PLoS One 2013; 8(6): e67303
https://doi.org/10.1371/journal.pone.0067303 pmid: 23840657
25 Coudriet GM, He J, Trucco M, Mars WM, Piganelli JD. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases. PLoS One 2010; 5(11): e15384
https://doi.org/10.1371/journal.pone.0015384 pmid: 21072211
26 Wang CC, Lee CH, Peng YJ, Salter DM, Lee HS. Platelet-rich plasma attenuates 30-kDa fibronectin fragment-induced chemokine and matrix metalloproteinase expression by meniscocytes and articular chondrocytes. Am J Sports Med 2015; 43(10): 2481–2489
https://doi.org/10.1177/0363546515597489 pmid: 26306780
27 Lee HR, Shon OJ, Park SI, Kim HJ, Kim S, Ahn MW, Do SH. Platelet-rich plasma increases the levels of catabolic molecules and cellular dedifferentiation in the meniscus of a rabbit model. Int J Mol Sci 2016; 17(1): E120
https://doi.org/10.3390/ijms17010120 pmid: 26784189
28 van Buul GM, Koevoet WL, Kops N, Bos PK, Verhaar JA, Weinans H, Bernsen MR, van Osch GJ. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med 2011; 39(11): 2362–2370
https://doi.org/10.1177/0363546511419278 pmid: 21856929
29 Anitua E, Sánchez M, Nurden AT, Zalduendo MM, de la Fuente M, Azofra J, Andía I. Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritic patients. Rheumatology (Oxford) 2007; 46(12): 1769–1772
https://doi.org/10.1093/rheumatology/kem234 pmid: 17942474
30 Denapoli PM, Stilhano RS, Ingham SJ, Han SW, Abdalla RJ. Platelet-rich plasma in a murine model: leukocytes, growth factors, Flt-1, and muscle healing. Am J Sports Med 2016; 44(8): 1962–1971
https://doi.org/10.1177/0363546516646100 pmid: 27217525
31 Peterson JE, Zurakowski D, Italiano JE Jr, Michel LV, Fox L, Klement GL, Folkman J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol 2010; 85(7): 487–493
https://doi.org/10.1002/ajh.21732 pmid: 20575035
32 Kakudo N, Morimoto N, Kushida S, Ogawa T, Kusumoto K. Platelet-rich plasma releasate promotes angiogenesis in vitro and in vivo. Med Mol Morphol 2014; 47(2): 83–89
https://doi.org/10.1007/s00795-013-0045-9 pmid: 23604952
33 Guo J, Chan KM, Zhang JF, Li G. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res 2016; 341(1): 1–7
https://doi.org/10.1016/j.yexcr.2016.01.007 pmid: 26794903
34 Mammoto T, Jiang A, Jiang E, Mammoto A. Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvasc Res 2013; 89: 15–24
https://doi.org/10.1016/j.mvr.2013.04.008 pmid: 23660186
35 Mammoto T, Chen Z, Jiang A, Jiang E, Ingber DE, Mammoto A. Acceleration of lung regeneration by platelet-rich plasma extract through the low-density lipoprotein receptor-related protein 5-Tie2 pathway. Am J Respir Cell Mol Biol 2016; 54(1): 103–113
https://doi.org/10.1165/rcmb.2015-0045OC pmid: 26091161
36 Kang J, Hur J, Kang JA, Yun JY, Choi JI, Ko SB, Lee CS, Lee J, Han JK, Kim HK, Kim HS. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF. J Mol Cell Cardiol 2014; 75: 64–75
https://doi.org/10.1016/j.yjmcc.2014.06.019 pmid: 25016235
37 Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol 2004; 25(2): 75–84
https://doi.org/10.1016/j.it.2003.12.005 pmid: 15102366
38 Kobayashi Y, Saita Y, Nishio H, Ikeda H, Takazawa Y, Nagao M, Takaku T, Komatsu N, Kaneko K. Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J Orthop Sci 2016;21(5):683–689
https://doi.org/10.1016/j.jos.2016.07.009
39 Pifer MA, Maerz T, Baker KC, Anderson K. Matrix metalloproteinase content and activity in low-platelet, low-leukocyte and high-platelet, high-leukocyte platelet rich plasma (PRP) and the biologic response to PRP by human ligament fibroblasts. Am J Sports Med 2014; 42(5): 1211–1218
https://doi.org/10.1177/0363546514524710 pmid: 24627579
40 Kawase T, Tanaka T, Okuda K, Tsuchimochi M, Oda M, Hara T. Quantitative single-cell motility analysis of platelet-rich plasma-treated endothelial cells in vitro. Cytoskeleton (Hoboken) 2015; 72(5): 246–255
https://doi.org/10.1002/cm.21221 pmid: 25845465
41 Sönmez TT, Vinogradov A, Zor F, Kweider N, Lippross S, Liehn EA, Naziroglu M, Hölzle F, Wruck C, Pufe T, Tohidnezhad M. The effect of platelet rich plasma on angiogenesis in ischemic flaps in VEGFR2-luc mice. Biomaterials 2013; 34(11): 2674–2682
https://doi.org/10.1016/j.biomaterials.2013.01.016 pmid: 23352038
42 Enomoto H, Inoki I, Komiya K, Shiomi T, Ikeda E, Obata K, Matsumoto H, Toyama Y, Okada Y. Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol 2003; 162(1): 171–181
https://doi.org/10.1016/S0002-9440(10)63808-4 pmid: 12507900
43 Gilbert RW, Vickaryous MK, Viloria-Petit AM. Signaling by transforming growth factor β isoforms in wound healing and tissue regeneration. J Dev Biol 2016; 4(2): 21
https://doi.org/10.3390/jdb4020021
44 Hinz B. Tissue stiffness, latent TGF-β1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 2009; 11(2): 120–126
https://doi.org/10.1007/s11926-009-0017-1 pmid: 19296884
45 Dohan Ehrenfest DM, Andia I, Zumstein MA, Zhang CQ, Pinto NR, Bielecki T. Classification of platelet concentrates (platelet-rich plasma(PRP), platelet-rich fibrin(PRF)) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J 2014; 4(1): 3–9
pmid: 24932440
46 Oh JH, Kim W, Park KU, Roh YH. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am J Sports Med 2015; 43(12): 3062–3070
https://doi.org/10.1177/0363546515608481 pmid: 26473014
47 Boswell SG, Schnabel LV, Mohammed HO, Sundman EA, Minas T, Fortier LA. Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons. Am J Sports Med 2014; 42(1): 42–49
https://doi.org/10.1177/0363546513507566 pmid: 24136860
48 Cross JA, Cole BJ, Spatny KP, Sundman E, Romeo AA, Nicholson GP, Wagner B, Fortier LA. Leukocyte-reduced platelet-rich plasma normalizes matrix metabolism in torn human rotator cuff tendons. Am J Sports Med 2015; 43(12): 2898–2906
https://doi.org/10.1177/0363546515608157 pmid: 26460099
49 Jo CH, Kim JE, Yoon KS, Shin S. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med 2012; 40(5): 1035–1045
https://doi.org/10.1177/0363546512437525 pmid: 22366517
50 McCarrel TM1, Minas T, Fortier LA. Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. J Bone Joint Surg Am 2012;94(19):e143(1–8)
https://doi.org/10.2106/JBJS.L.00019
51 Rubio-Azpeitia E, Bilbao AM, Sánchez P, Delgado D, Andia I. The Properties of 3 different plasma formulations and their effects on tendinopathic cells. Am J Sports Med 2016; 44(8): 1952–1961
https://doi.org/10.1177/0363546516643814 pmid: 27161868
52 Zhang L, Chen S, Chang P, Bao N, Yang C, Ti Y, Zhou L, Zhao J. Harmful effects of leukocyte-rich platelet-rich plasma on rabbit tendon stem cells in vitro. Am J Sports Med 2016; 44(8): 1941–1951
https://doi.org/10.1177/0363546516644718 pmid: 27184544
53 Zhou Y, Zhang J, Wu H, Hogan MV, Wang JH. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells —implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther 2015; 6(1): 173
https://doi.org/10.1186/s13287-015-0172-4 pmid: 26373929
54 Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 2007; 13(10): 1219–1227
https://doi.org/10.1038/nm1630 pmid: 17828274
55 Guo Y, Yu H, Yuan L, Yao S, Yu H, Wang P, Lv H, Li W, Sun S. Treatment of knee osteoarthritis with platelet-rich plasma plus hyaluronic acid in comparison with platelet-rich plasma only. Int J Clin Exp Med 2016; 9(6): 12085–12090
56 Assirelli E, Filardo G, Mariani E, Kon E, Roffi A, Vaccaro F, Marcacci M, Facchini A, Pulsatelli L. Effect of two different preparations of platelet-rich plasma on synoviocytes. Knee Surg Sports Traumatol Arthrosc 2015; 23(9): 2690–2703
https://doi.org/10.1007/s00167-014-3113-3 pmid: 24942296
57 Braun HJ, Kim HJ, Chu CR, Dragoo JL. The effect of platelet-rich plasma formulations and blood products on human synoviocytes: implications for intra-articular injury and therapy. Am J Sports Med 2014; 42(5): 1204–1210
https://doi.org/10.1177/0363546514525593 pmid: 24634448
58 Cavallo C, Filardo G, Mariani E, Kon E, Marcacci M, Pereira Ruiz MT, Facchini A, Grigolo B. Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study. J Bone Joint Surg Am 2014; 96(5): 423–429
https://doi.org/10.2106/JBJS.M.00726 pmid: 24599205
59 Freymann U, Metzlaff S, Krüger JP, Hirsh G, Endres M, Petersen W, Kaps C. Effect of human serum and 2 different types of platelet concentrates on human meniscus cell migration, proliferation, and matrix formation. Arthroscopy 2016; 32(6): 1106–1116
https://doi.org/10.1016/j.arthro.2015.11.033 pmid: 26874799
60 Jalowiec JM, D’Este M, Bara JJ, Denom J, Menzel U, Alini M, Verrier S, Herrmann M. An in vitro investigation of platelet-rich plasma-gel as a cell and growth factor delivery vehicle for tissue engineering. Tissue Eng Part C Methods 2016; 22(1): 49–58
https://doi.org/10.1089/ten.tec.2015.0223 pmid: 26467221
61 Kreuz PC, Krüger JP, Metzlaff S, Freymann U, Endres M, Pruss A, Petersen W, Kaps C. Platelet-rich plasma preparation types show impact on chondrogenic differentiation, migration, and proliferation of human subchondral mesenchymal progenitor cells. Arthroscopy 2015; 31(10): 1951–1961
https://doi.org/10.1016/j.arthro.2015.03.033 pmid: 25980401
62 Osterman C, McCarthy MB, Cote MP, Beitzel K, Bradley J, Polkowski G, Mazzocca AD. Platelet-rich plasma increases anti-inflammatory markers in a human coculture model for osteoarthritis. Am J Sports Med 2015; 43(6): 1474–1484
https://doi.org/10.1177/0363546515570463 pmid: 25716226
63 Ríos DL, López C, Carmona JU. Evaluation of the anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of cartilage inflammation. Cytokine 2015; 76(2): 505–513
https://doi.org/10.1016/j.cyto.2015.07.008 pmid: 26185893
64 Mariani E, Canella V, Cattini L, Kon E, Marcacci M, Di Matteo B, Pulsatelli L, Filardo G. Leukocyte-rich platelet-rich plasma injections do not up-modulate intra-articular pro-inflammatory cytokines in the osteoarthritic knee. PLoS One 2016; 11(6): e0156137
https://doi.org/10.1371/journal.pone.0156137 pmid: 27258008
65 Filardo G, Kon E, Pereira Ruiz MT, Vaccaro F, Guitaldi R, Di Martino A, Cenacchi A, Fornasari PM, Marcacci M. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single- versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc 2012; 20(10): 2082–2091
https://doi.org/10.1007/s00167-011-1837-x pmid: 22203046
66 Yoshida R, Murray MM. Peripheral blood mononuclear cells enhance the anabolic effects of platelet-rich plasma on anterior cruciate ligament fibroblasts. J Orthop Res 2013; 31(1): 29–34
https://doi.org/10.1002/jor.22183 pmid: 22767425
67 Nami N, Feci L, Napoliello L, Giordano A, Lorenzini S, Galeazzi M, Rubegni P, Fimiani M. Crosstalk between platelets and PBMC: new evidence in wound healing. Platelets 2016; 27(2): 143–148
pmid: 26030799
68 Mazzocca AD, McCarthy MB, Chowaniec DM, Dugdale EM, Hansen D, Cote MP, Bradley JP, Romeo AA, Arciero RA, Beitzel K. The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells. Am J Sports Med 2012; 40(8): 1742–1749
https://doi.org/10.1177/0363546512452713 pmid: 22802273
69 Hosny N, Goubran F, BadrEldin Hasan B, Kamel N. Assessment of vascular endothelial growth factor in fresh versus frozen platelet rich plasma. J Blood Transfus 2015;2015:706903
70 Roffi A, Filardo G, Assirelli E, Cavallo C, Cenacchi A, Facchini A, Grigolo B, Kon E, Mariani E, Pratelli L, Pulsatelli L, Marcacci M. Does platelet-rich plasma freeze-thawing influence growth factor release and their effects on chondrocytes and synoviocytes? Biomed Res Int 2014;2014:692913
71 Sonker A, Dubey A. Determining the effect of preparation and storage: an effort to streamline platelet components as a source of growth factors for clinical application. Transfus Med Hemother 2015; 42(3): 174–180
https://doi.org/10.1159/000371504 pmid: 26195931
72 Pan L, Yong Z, Yuk KS, Hoon KY, Yuedong S, Xu J. Growth factor release from lyophilized porcine platelet-rich plasma: quantitative analysis and implications for clinical applications. Aesthetic Plast Surg 2016; 40(1): 157–163
https://doi.org/10.1007/s00266-015-0580-y pmid: 26516079
73 Salini V, Vanni D, Pantalone A, Abate M. Platelet rich plasma therapy in non-insertional achilles tendinopathy: the efficacy is reduced in 60-years old people compared to young and middle-age individuals. Front Aging Neurosci 2015; 7: 228
https://doi.org/10.3389/fnagi.2015.00228 pmid: 26696880
74 Perez-Zabala E, Basterretxea A, Larrazabal A, Perez-Del-Pecho K, Rubio-Azpeitia E, Andia I. Biological approach for the management of non-healing diabetic foot ulcers. J Tissue Viability 2016; 25(2): 157–163
https://doi.org/10.1016/j.jtv.2016.03.003 pmid: 27038643
75 Tobita M, Tajima S, Mizuno H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res Ther 2015; 6(1): 215
https://doi.org/10.1186/s13287-015-0217-8 pmid: 26541973
76 Abate M, Schiavone C, Salini V, Andia I. Occurrence of tendon pathologies in metabolic disorders. Rheumatology (Oxford) 2013; 52(4): 599–608
https://doi.org/10.1093/rheumatology/kes395 pmid: 23315787
77 Andia I, Rubio-Azpeitia E, Maffulli N. Hyperuricemic PRP in tendon cells. Biomed Res Int 2014;2014:926481
78 Sung CM, Hah YS, Kim JS, Nam JB, Kim RJ, Lee SJ, Park HB. Cytotoxic effects of ropivacaine, bupivacaine, and lidocaine on rotator cuff tenofibroblasts. Am J Sports Med 2014; 42(12): 2888–2896
https://doi.org/10.1177/0363546514550991 pmid: 25296645
79 Breu A, Scheidhammer I, Kujat R, Graf B, Angele P. Local anesthetic cytotoxicity on human mesenchymal stem cells during chondrogenic differentiation. Knee Surg Sports Traumatol Arthrosc 2015; 23(4): 937–945
https://doi.org/10.1007/s00167-014-3312-y pmid: 25217319
80 Dean BJ, Lostis E, Oakley T, Rombach I, Morrey ME, Carr AJ. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin Arthritis Rheum 2014; 43(4): 570–576
https://doi.org/10.1016/j.semarthrit.2013.08.006 pmid: 24074644
81 Durant TJ, Dwyer CR, McCarthy MB, Cote MP, Bradley JP, Mazzocca AD. Protective nature of platelet-rich plasma against chondrocyte death when combined with corticosteroids or local anesthetics. Am J Sports Med 2017; 45(1): 218–225
pmid: 27582279
82 Abate M, Schiavone C, Salini V, Andia I. Clinical benefits and drawbacks of local corticosteroids injections in tendinopathies. Exp Opin Drug Safety 2017;16(3):341–349
https://doi.org/10.1080/14740338.2017.1276561
83 Zargar Baboldashti N, Poulsen RC, Franklin SL, Thompson MS, Hulley PA. Platelet-rich plasma protects tenocytes from adverse side effects of dexamethasone and ciprofloxacin. Am J Sports Med 2011; 39(9): 1929–1935
https://doi.org/10.1177/0363546511407283 pmid: 21632978
84 Carofino B, Chowaniec DM, McCarthy MB, Bradley JP, Delaronde S, Beitzel K, Cote MP, Arciero RA, Mazzocca AD. Corticosteroids and local anesthetics decrease positive effects of platelet-rich plasma: an in vitro study on human tendon cells. Arthroscopy 2012; 28(5): 711–719
https://doi.org/10.1016/j.arthro.2011.09.013 pmid: 22264830
85 Schippinger G, Prüller F, Divjak M, Mahla E, Fankhauser F, Rackemann S, Raggam RB. Autologous platelet-rich plasma preparations: influence of nonsteroidal anti-inflammatory drugs on platelet function. Orthop J Sports Med 2015; 3(6): 26665098
https://doi.org/10.1177/2325967115588896 pmid: 26665098
86 Finnoff JT, Fowler SP, Lai JK, Santrach PJ, Willis EA, Sayeed YA, Smith J. Treatment of chronic tendinopathy with ultrasound-guided needle tenotomy and platelet-rich plasma injection. PM R 2011; 3(10): 900–911
https://doi.org/10.1016/j.pmrj.2011.05.015 pmid: 21872551
87 Andia I, Maffulli N. Biological therapies in regenerative sports medicine. Sports Med 2017; 47(5): 807–828
pmid: 27677916
88 Clarke AW, Alyas F, Morris T, Robertson CJ, Bell J, Connell DA. Skin-derived tenocyte-like cells for the treatment of patellar tendinopathy. Am J Sports Med 2011; 39(3): 614–623
https://doi.org/10.1177/0363546510387095 pmid: 21139155
89 Tate-Oliver K, Alexander RW. Combination of autologous adipose-derived tissue stromal vascular fraction plus high-density platelet rich plasma or bone marrow concentrates in Achilles tendon tears. J Prolotherapy 2013; 5: e895–e912
90 Barbosa D, de Souza RA, de Carvalho WR, Xavier M, de Carvalho PK, Cunha TC, Arisawa EÂ, Silveira L Jr, Villaverde AB. Low-level laser therapy combined with platelet-rich plasma on the healing calcaneal tendon: a histological study in a rat model. Lasers Med Sci 2013; 28(6): 1489–1494
https://doi.org/10.1007/s10103-012-1241-x pmid: 23307438
91 Allahverdi A, Sharifi D, Takhtfooladi MA, Hesaraki S, Khansari M, Dorbeh SS. Evaluation of low-level laser therapy, platelet-rich plasma, and their combination on the healing of Achilles tendon in rabbits. Lasers Med Sci 2015; 30(4): 1305–1313
https://doi.org/10.1007/s10103-015-1733-6 pmid: 25759233
92 Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 2009; 27(10): 1392–1398
https://doi.org/10.1002/jor.20887 pmid: 19350658
93 Witte TH, Yeager AE, Nixon AJ. Intralesional injection of insulin-like growth factor-I for treatment of superficial digital flexor tendonitis in thoroughbred racehorses: 40 cases (2000–2004). J Am Vet Med Assoc 2011; 239(7): 992–997
https://doi.org/10.2460/javma.239.7.992 pmid: 21961641
94 Hansen M, Boesen A, Holm L, Flyvbjerg A, Langberg H, Kjaer M. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports 2013; 23(5): 614–619
pmid: 22288768
95 Boesen AP, Dideriksen K, Couppé C, Magnusson SP, Schjerling P, Boesen M, Kjaer M, Langberg H. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration. J Physiol 2013; 591(23): 6039–6052
https://doi.org/10.1113/jphysiol.2013.261263 pmid: 24081158
96 Sampson S, Smith J, Vincent H, Aufiero D, Zall M, Botto-van-Bemden A. Intra-articular bone marrow concentrate injection protocol: short-term efficacy in osteoarthritis. Regen Med 2016; 11(6): 511–520
https://doi.org/10.2217/rme-2016-0081 pmid: 27527808
97 Rubio-Azpeitia E, Andia I. Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Muscles Ligaments Tendons J 2014; 4(1): 52–62
pmid: 24932448
98 Van Pham P, Bui KH, Ngo DQ, Vu NB, Truong NH, Phan NL, Le DM, Duong TD, Nguyen TD, Le VT, Phan NK. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther 2013; 4(4): 91
https://doi.org/10.1186/scrt277 pmid: 23915433
99 Gibbs N, Diamond R, Sekyere EO, Thomas WD. Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet-rich plasma, and musculoskeletal exercises: a case series. J Pain Res 2015; 8: 799–806
https://doi.org/10.2147/JPR.S92090 pmid: 26609244
100 Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 2012; 19(6): 902–907
https://doi.org/10.1016/j.knee.2012.04.001 pmid: 22583627
101 Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy 2013; 29(4): 748–755
https://doi.org/10.1016/j.arthro.2012.11.017 pmid: 23375182
102 Pak J, Lee JH, Lee SH. A novel biological approach to treat chondromalacia patellae. PLoS One 2013; 8(5): e64569
https://doi.org/10.1371/journal.pone.0064569 pmid: 23700485
103 Pak J, Chang JJ, Lee JH, Lee SH. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet Disord 2013; 14(1): 337
https://doi.org/10.1186/1471-2474-14-337 pmid: 24289766
104 Pak J, Lee JH, Park KS, Jeong BC, Lee SH. Regeneration of cartilage in human knee osteoarthritis with autologous adipose tissue-derived stem cells and autologous extracellular matrix. Biores Open Access 2016; 5(1):192–200
https://doi.org/10.1089/biores.2016.0024
105 Bui KH-T, Duong TD, Nguyen NT, Nguyen TD, Le VT, Mai VT, Phan NL-C, Le DM, Ngoc NK, Van Pham P. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet rich plasma: a clinical study. Biomed Res Therapy 2014; 1(1): 02–08
https://doi.org/10.7603/s40730-014-0002-9
106 Russo F, D’Este M, Vadalà G, Cattani C, Papalia R, Alini M, Denaro V. Platelet rich plasma and hyaluronic acid blend for the treatment of osteoarthritis: rheological and biological evaluation. PLoS One 2016; 11(6): e0157048
https://doi.org/10.1371/journal.pone.0157048 pmid: 27310019
107 Andia I, Abate M. Knee osteoarthritis: hyaluronic acid, platelet-rich plasma or both in association? Expert Opin Biol Ther 2014; 14(5): 635–649
https://doi.org/10.1517/14712598.2014.889677 pmid: 24533435
108 Chen WH, Lin CM, Huang CF, Hsu WC, Lee CH, Ou KL, Dubey NK, Deng WP. Functional recovery in osteoarthritic chondrocytes through hyaluronic acid and platelet-rich plasma-inhibited infrapatellar fat pad adipocytes. Am J Sports Med 2016; 44(10): 2696–2705
https://doi.org/10.1177/0363546516651822 pmid: 27400716
109 Abate M, Verna S, Schiavone C, Di Gregorio P, Salini V. Efficacy and safety profile of a compound composed of platelet-rich plasma and hyaluronic acid in the treatment for knee osteoarthritis (preliminary results). Eur J Orthop Surg Traumatol 2015; 25(8): 1321–1326
https://doi.org/10.1007/s00590-015-1693-3 pmid: 26403468
110 Dallari D, Stagni C, Rani N, Sabbioni G, Pelotti P, Torricelli P, Tschon M, Giavaresi G. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med 2016; 44(3): 664–671
https://doi.org/10.1177/0363546515620383 pmid: 26797697
111 Lana JFSD, Weglein A, Sampson SE, Vicente EF, Huber SC, Souza CV, Ambach MA, Vincent H, Urban-Paffaro A, Onodera CM, Annichino-Bizzacchi JM, Santana MH, Belangero WD. Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. J Stem Cells Regen Med 2016; 12(2): 69–78
pmid: 28096631
112 Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL; Dutch Hamstring Injection Therapy (HIT) Study Investigators. Platelet-rich plasma injections in acute muscle injury. N Engl J Med 2014; 370(26): 2546– 2547
https://doi.org/10.1056/NEJMc1402340 pmid: 24963588
113 A Hamid MS, Mohamed Ali MR, Yusof A, George J, Lee LP. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med 2014; 42(10): 2410–2418
https://doi.org/10.1177/0363546514541540 pmid: 25073598
114 Martinez-Zapata MJ, Orozco L, Balius R, Soler R, Bosch A, Rodas G, Til L, Peirau X, Urrútia G, Gich I, Bonfill X; PRP-RICE group. Efficacy of autologous platelet-rich plasma for the treatment of muscle rupture with haematoma: a multicentre, randomised, double-blind, placebo-controlled clinical trial. Blood Transfus 2016; 14(2): 245–254
pmid: 26509827
115 Hamilton B, Tol JL, Almusa E, Boukarroum S, Eirale C, Farooq A, Whiteley R, Chalabi H. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med 2015; 49(14): 943–950
https://doi.org/10.1136/bjsports-2015-094603 pmid: 26136179
116 Rossi LA, Molina Rómoli AR, Bertona Altieri BA, Burgos Flor JA, Scordo WE, Elizondo CM. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2016 Apr 16. [Epub ahead of print] https://doi.org/10.1007/s00167-016-4129-7
https://doi.org/10.1007/s00167-016-4129-7 pmid: 27085364
117 Bosurgi L, Manfredi AA, Rovere-Querini P. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol 2011; 2(62): 62
pmid: 22566851
118 Andia I, Abate M. Platelet-rich plasma in the treatment of skeletal muscle injuries. Expert Opin Biol Ther 2015; 15(7): 987–999
https://doi.org/10.1517/14712598.2015.1038234 pmid: 25891080
119 Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10): 790–811
https://doi.org/10.1038/nrd3810 pmid: 23000686
120 Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A, Mikels AJ, Agrawal S, Schaffer DV, Conboy IM. Relative roles of TGF-β1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 2009; 8(6): 676–689
https://doi.org/10.1111/j.1474-9726.2009.00517.x pmid: 19732043
121 Reed NI, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, Sheppard D. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med 2015; 7(288): 288ra79
https://doi.org/10.1126/scitranslmed.aaa5094 pmid: 25995225
122 Terada S, Ota S, Kobayashi M, Kobayashi T, Mifune Y, Takayama K, Witt M, Vadalà G, Oyster N, Otsuka T, Fu FH, Huard J. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am 2013; 95(11): 980–988
https://doi.org/10.2106/JBJS.L.00266 pmid: 23780535
[1] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
[2] Jinzheng LI, Min LI, Bolin NIU, Jianping GONG. Therapeutic potential of stem cell in liver regeneration[J]. Front Med, 2011, 5(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed