Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (6) : 627-638    https://doi.org/10.1007/s11684-019-0697-5
REVIEW
What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations
Mara Simopoulou1,2(), Konstantinos Sfakianoudis3, Petroula Tsioulou1, Anna Rapani1, Polina Giannelou1,3, Nikolaos Kiriakopoulos1, Agni Pantou3, Nikolaos Vlahos1, George Anifandis4, Stamatis Bolaris5, Konstantinos Pantos3, Michael Koutsilieris1
1. Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece
2. Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias str., 11528, Athens, Greece
3. Centre for Human Reproduction, Genesis Athens Clinic, Papanikoli, 15232, Athens, Greece
4. Department of Histology and Embryology, Faculty of Medicine, University of Thessaly, 41500, Larisa, Greece
5. Assisted Conception Unit, General-Maternity District Hospital “Elena Venizelou,” Plateia Elenas Venizelou, 11521, Athens, Greece
 Download: PDF(527 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Assisted reproduction provides a wide spectrum of treatments and strategies addressing infertility. However, distinct groups of infertile patients with unexplained infertility, congenital disorders, and other complex cases pose a challenge in in vitro fertilization (IVF) practices. This special cohort of patients is associated with futile attempts, IVF overuse, and dead ends in management. Cutting edge research on animal models introduced this concept, along with the development of artificial organs with the aim to mimic the respective physiological functions in reproduction. Extrapolation on clinical application leads to the future use of infertility management in humans. To date, the successful clinical application of artificial reproductive organs in humans is not feasible because further animal model studies are required prior to clinical trials. The application of these artificial organs could provide a solution to infertility cases with no other options. This manuscript presents an overview on the current status, future prospects, and considerations on the potential clinical application of artificial ovary, uterus, and gametes in humans. This paper presents how the IVF practice landscape may be shaped and challenged in the future, along with the subsequent concerns in assisted reproductive treatments.

Keywords artificial ovary      artificial uterus      artificial gametes      assisted reproduction      considerations      in vitro fertilization     
Corresponding Authors: Mara Simopoulou   
Just Accepted Date: 13 June 2019   Online First Date: 17 July 2019    Issue Date: 16 December 2019
 Cite this article:   
Mara Simopoulou,Konstantinos Sfakianoudis,Petroula Tsioulou, et al. What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations[J]. Front. Med., 2019, 13(6): 627-638.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0697-5
http://academic.hep.com.cn/fmd/EN/Y2019/V13/I6/627
Fig.1  Factors affecting the future implementation of artificial organs in assisted reproduction.
Fig.2  Outline of the review content. AO, artificial ovary; AU, artificial uterus; AGs, artificial gametes; ART, assisted reproductive technologies.
Artificial organs In vitro experiments employing human cells Animal model experiments Clinical trials on humans Fields of future implementation of artificial reproductive organs in assisted reproduction
Clinical application Application in the IVF laboratory Research application
AO Yes [21] Mouse [6,9,1520,22] No Ovarian function restoration
Fertility preservation/ maintenance
Oocyte culture
In vitro maturation of oocytes
Toxicity tests
Investigate folliculogenesis
AU Yes [45]a Goat [46]
Shark [49]
Lamb [50]
Rat [51]
Rabbit [52]
No Absolute uterine etiology
RIF
Unexplained infertility
Surrogacy replacement
Embryo culture Toxicity tests
Investigate implantation procedure
AGs No Mouse [85] No Enable genetic parenthood Test IVF consumables and conditions Toxicity tests
Investigate gametogenesis
Tab.1  Technical overview of current status and limitations and possibilities regarding future direction on the clinical application and research of artificial organs in assisted reproduction
Fig.3  Graphical representation of ART patients benefiting from future application of artificial organs. AO, artificial ovary; AU, artificial uterus; AGs, artificial gametes; ART, assisted reproduction technologies; RIF, recurrent implantation failure; POF, premature ovarian failure; POR, poor ovarian reserve; DOR, diminished ovarian reserve; AMA, advanced maternal age.
1 JK Min, SA Breheny, V MacLachlan, DL Healy. What is the most relevant standard of success in assisted reproduction? The singleton, term gestation, live birth rate per cycle initiated: the BESST endpoint for assisted reproduction. Hum Reprod 2004; 19(1): 3–7
https://doi.org/10.1093/humrep/deh028 pmid: 14688149
2 J Wang, MV Sauer. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2006; 2(4): 355–364
https://doi.org/10.2147/tcrm.2006.2.4.355 pmid: 18360648
3 JYJ Huang, Z Rosenwaks. Assisted reproductive techniques. In: Rosenwaks Z, Wassarman PM. Human Fertility: Methods and Protocols. New York, NY: Springer New York, 2014: 171–231
4 C Audibert, D Glass. A global perspective on assisted reproductive technology fertility treatment: an 8-country fertility specialist survey. Reprod Biol Endocrinol 2015; 13: 133
https://doi.org/10.1186/s12958-015-0131-z
5 SS Yoo. 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat 2015; 25(5): 507–511
https://doi.org/DOI:10.1517/13543776.2015.1019466 pmid: PMID:25711801
6 J Kim, AS Perez, J Claflin, A David, H Zhou, A Shikanov. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice. NPJ Regen Med 2016; 1(1): 16010
https://doi.org/10.1038/npjregenmed.2016.10 pmid: 28856012
7 A Podfigurna-Stopa, A Czyzyk, M Grymowicz, R Smolarczyk, K Katulski, K Czajkowski, B Meczekalski. Premature ovarian insufficiency: the context of long-term effects. J Endocrinol Invest 2016; 39(9): 983–990
https://doi.org/10.1007/s40618-016-0467-z pmid: 27091671
8 C Díaz-García, S Herraiz. The artificial ovary: any new step is a step forward. Fertil Steril 2014; 101(4): 940
https://doi.org/10.1016/j.fertnstert.2014.01.057 pmid: 24613531
9 VM Schmidt, E Isachenko, G Rappl, G Rahimi, B Hanstein, B Morgenstern, P Mallmann, V Isachenko. Construction of human artificial ovary from cryopreserved ovarian tissue: appearance of apoptosis and necrosis after enzymatic isolation of follicles. Cryobiology 2018; 84: 10–14
https://doi.org/10.1016/j.cryobiol.2018.08.011 pmid: PMID:30148986
10 CA Amorim, A Shikanov. The artificial ovary: current status and future perspectives. Future Oncol 2016; 12(20): 2323–2332
https://doi.org/10.2217/fon-2016-0202 pmid: 27396310
11 AS Dawood, HA Salem. Current clinical applications of platelet-rich plasma in various gynecological disorders: an appraisal of theory and practice. Clin Exp Reprod Med 2018; 45(2): 67–74
https://doi.org/10.5653/cerm.2018.45.2.67 pmid: 29984206
12 K Sfakianoudis, M Simopoulou, N Nitsos, A Rapani, A Pantou, T Vaxevanoglou, G Kokkali, M Koutsilieris, K Pantos. A case series on platelet-rich plasma revolutionary management of poor responder patients. Gynecol Obstet Invest 2019; 84(1): 99–106
https://doi.org/DOI:10.1159/000491697 pmid: PMID:30134239
13 L Devoto, A Palomino, P Céspedes, P Kohen. Neuroendocrinology and ovarian aging. Gynecol Endocrinol 2012; 28 (sup1):14–17
https://doi.org/10.3109/09513590.2012.651927 pmid: PMID:22273454
14 H Ye, T Zheng, W Li, X Li, X Fu, Y Huang, C Hu, J Li, J Huang, Z Liu, L Zheng, Y Zheng. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem 2017; 43(5): 1917–1925
https://doi.org/10.1159/000484114 pmid: 29055950
15 YJ Kim, YY Kim, BC Kang, MS Kim, IK Ko, HC Liu, Z Rosenwaks, SY Ku. Induction of multiple ovulation via modulation of angiotensin II receptors in in vitro ovarian follicle culture models. J Tissue Eng Regen Med 2017; 11(11): 3100–3110
https://doi.org/10.1002/term.2214 pmid: 27717202
16 YY Kim, A Tamadon, SY Ku. Potential use of antiapoptotic proteins and noncoding RNAs for efficient in vitro follicular maturation and ovarian bioengineering. Tissue Eng Part B Rev 2017; 23(2): 142–158
https://doi.org/10.1089/ten.teb.2016.0156 pmid: 27763207
17 V Luyckx, MM Dolmans, J Vanacker, C Legat, C Fortuño Moya, J Donnez, CA Amorim. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril 2014; 101(4): 1149–1156
https://doi.org/10.1016/j.fertnstert.2013.12.025 pmid: 24462059
18 A Tamadon, KH Park, YY Kim, BC Kang, SY Ku. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng Regen Med 2016; 13(5): 447–454
https://doi.org/10.1007/s13770-016-9107-0 pmid: 30603426
19 F Paulini, JMV Vilela, MC Chiti, J Donnez, P Jadoul, MM Dolmans, CA Amorim. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online 2016; 33(3): 425–432
https://doi.org/10.1016/j.rbmo.2016.05.003 pmid: 27210771
20 E Kniazeva, AN Hardy, SA Boukaidi, TK Woodruff, JS Jeruss, LD Shea. Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Sci Rep 2015; 5(1): 17709
https://doi.org/10.1038/srep17709 pmid: 26633657
21 MC Chiti, MM Dolmans, L Mortiaux, F Zhuge, E Ouni, PAK Shahri, E Van Ruymbeke, SD Champagne, J Donnez, CA Amorim. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet 2018; 35(1): 41–48
https://doi.org/10.1007/s10815-017-1091-3 pmid: 29236205
22 MM Laronda, AL Rutz, S Xiao, KA Whelan, FE Duncan, EW Roth, TK Woodruff, RN Shah. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8: 15261
https://doi.org/10.1038/ncomms15261 pmid: 28509899
23 JW Yun, YY Kim, JH Ahn, BC Kang, SY Ku. Use of nonhuman primates for the development of bioengineered female reproductive organs. Tissue Eng Regen Med 2016; 13(4): 323–334
https://doi.org/10.1007/s13770-016-9091-4 pmid: 30603414
24 G Del Priore, S Schlatt, J Malanowska-Stega. Uterus transplant techniques in primates: 10 years’ experience. Exp Clin Transplant 2008; 6(1): 87–94
pmid: 18405252
25 V von Schönfeldt, R Chandolia, R Ochsenkühn, E Nieschlag, L Kiesel, B Sonntag. FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting. Reprod Biol Endocrinol 2012; 10(1): 98
https://doi.org/10.1186/1477-7827-10-98 pmid: 23176179
26 YY Kim, JW Yun, JM Kim, CG Park, Z Rosenwaks, HC Liu, BC Kang, SY Ku. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles. J Investig Med 2016; 64(4): 888–893
https://doi.org/10.1136/jim-2015-000001 pmid: 26980777
27 A Huxley. Brave New World. Reprint edition. New York: Harper Perennial, 1932
28 HKL Johansson, T Svingen, PA Fowler, AM Vinggaard, J Boberg. Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13(7): 400–414
https://doi.org/10.1038/nrendo.2017.36 pmid: 28450750
29 AA Luciano, A Lanzone, AJ Goverde. Management of female infertility from hormonal causes. Int J Gynaecol Obstet 2013; 123(Suppl 2): S9–S17
https://doi.org/10.1016/j.ijgo.2013.09.007 pmid: 24139473
30 M Simopoulou, B Asimakopoulos, P Bakas, N Boyadjiev, D Tzanakaki, G Creatsas. Oocyte and embryo vitrification in the IVF laboratory: a comprehensive review. Folia Med (Plovdiv) 2014; 56(3): 161–169
https://doi.org/10.2478/folmed-2014-0023 pmid: 25434072
31 JR Ho, I Woo, K Louie, W Salem, SI Jabara, KA Bendikson, RJ Paulson, K Chung. A comparison of live birth rates and perinatal outcomes between cryopreserved oocytes and cryopreserved embryos. J Assist Reprod Genet 2017; 34(10): 1359–1366
https://doi.org/10.1007/s10815-017-0995-2 pmid: 28718080
32 S Kim, Y Lee, S Lee, T Kim. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci 2018; 61(4): 431–442
https://doi.org/10.5468/ogs.2018.61.4.431 pmid: 30018897
33 Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril 2014; 101(5): 1237–1243
https://doi.org/10.1016/j.fertnstert.2014.02.052 pmid: 24684955
34 Q Shi, Y Xie, Y Wang, S Li. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep 2017; 7(1): 8538
https://doi.org/10.1038/s41598-017-09005-7 pmid: 28819292
35 FJ Mathias, F D’Souza, S Uppangala, SR Salian, G Kalthur, SK Adiga. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 2014; 60(6): 317–322
https://doi.org/10.3109/19396368.2014.923542 pmid: 24896655
36 F Pacheco, K Oktay. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci 2017; 24(8): 1111–1120
https://doi.org/10.1177/1933719117702251 pmid: 28701069
37 J Perrin, J Saïas-Magnan, F Broussais, R Bouabdallah, C D’Ercole, B Courbiere. First French live-birth after oocyte vitrification performed before chemotherapy for fertility preservation. J Assist Reprod Genet 2016; 33(5): 663–666
https://doi.org/10.1007/s10815-016-0674-8 pmid: 26861964
38 R Dittrich, L Lotz, G Keck, I Hoffmann, A Mueller, MW Beckmann, H van der Ven, M Montag. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 2012; 97(2): 387–390
https://doi.org/10.1016/j.fertnstert.2011.11.047 pmid: 22177311
39 S Silber. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet 2016; 33(12): 1595–1603
https://doi.org/10.1007/s10815-016-0814-1 pmid: 27722934
40 S Torrealday, L Pal. Premature menopause. Endocrinol Metab Clin North Am 2015; 44(3): 543–557
https://doi.org/10.1016/j.ecl.2015.05.004 pmid: 26316242
41 J Balasch, E Gratacós. Delayed childbearing: effects on fertility and the outcome of pregnancy. Curr Opin Obstet Gynecol 2012; 24(3): 187–193
https://doi.org/10.1097/GCO.0b013e3283517908 pmid: 22450043
42 B Meczekalski, A Czyzyk, M Kunicki, A Podfigurna-Stopa, L Plociennik, G Jakiel, M Maciejewska-Jeske, K Lukaszuk. Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol Invest 2016; 39(11): 1259–1265
https://doi.org/10.1007/s40618-016-0497-6 pmid: 27300031
43 P Ventura-Juncá, I Irarrázaval, AJ Rolle, JI Gutiérrez, RD Moreno, MJ Santos. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48(1): 68
https://doi.org/10.1186/s40659-015-0059-y pmid: 26683055
44 C Bulletti, A Palagiano, C Pace, A Cerni, A Borini, D de Ziegler. The artificial womb. Ann N Y Acad Sci 2011; 1221(1): 124–128
https://doi.org/10.1111/j.1749-6632.2011.05999.x pmid: 21401640
45 C Bulletti, VM Jasonni, S Tabanelli, L Gianaroli, PM Ciotti, AP Ferraretti, C Flamigni. Early human pregnancy in vitro utilizing an artificially perfused uterus. Fertil Steril 1988; 49(6): 991–996
https://doi.org/10.1016/S0015-0282(16)59949-X pmid: 3371494
46 SC Pak, CH Song, GY So, CH Jang, KH Lee, JY Kim. Extrauterine incubation of fetal goats applying the extracorporeal membrane oxygenation via umbilical artery and vein. J Korean Med Sci 2002; 17(5): 663–668
https://doi.org/10.3346/jkms.2002.17.5.663 pmid: 12378020
47 AK Mittra, NK Choudhary, AS Zadgaonkar. Development of an artificial womb for acoustical simulation of mother’s abdomen. Int J Biomed Eng Technol 2008; 1(3): 315
https://doi.org/10.1504/IJBET.2008.016964
48 F Simonstein. Artificial reproduction technologies (RTs)—all the way to the artificial womb? Med Health Care Philos 2006; 9(3): 359–365
https://doi.org/10.1007/s11019-006-0005-4 pmid: 16988897
49 O Nick, E Megan. Construction and test of an artificial uterus for ex situ development of shark embryos. Zoo Biol 2012; 31(2): 197–205
https://doi.org/10.1002/zoo.20422 pmid: 21905089
50 EA Partridge, MG Davey, MA Hornick, PE McGovern, AY Mejaddam, JD Vrecenak, C Mesas-Burgos, A Olive, RC Caskey, TR Weiland, J Han, AJ Schupper, JT Connelly, KC Dysart, J Rychik, HL Hedrick, WH Peranteau, AW Flake. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017; 8: 15112
https://doi.org/10.1038/ncomms15112 pmid: 28440792
51 M Hellström, RR El-Akouri, C Sihlbom, BM Olsson, J Lengqvist, H Bäckdahl, BR Johansson, M Olausson, S Sumitran-Holgersson, M Brännström. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater 2014; 10(12): 5034–5042
https://doi.org/10.1016/j.actbio.2014.08.018 pmid: 25169258
52 SH Lü, HB Wang, H Liu, HP Wang, QX Lin, DX Li, YX Song, CM Duan, LX Feng, CY Wang. Reconstruction of engineered uterine tissues containing smooth muscle layer in collagen/matrigel scaffold in vitro. Tissue Eng Part A 2009; 15(7): 1611–1618
https://doi.org/10.1089/ten.tea.2008.0187 pmid: 19061433
53 I Kisu, M Mihara, K Banno, H Hara, Y Masugi, J Araki, T Iida, Y Yamada, Y Kato, T Shiina, N Suganuma, D Aoki. Uterus allotransplantation in cynomolgus macaque: a preliminary experience with non-human primate models. J Obstet Gynaecol Res 2014; 40(4): 907–918
https://doi.org/10.1111/jog.12302 pmid: 24612366
54 M Brännström, L Johannesson, H Bokström, N Kvarnström, J Mölne, P Dahm-Kähler, A Enskog, M Milenkovic, J Ekberg, C Diaz-Garcia, M Gäbel, A Hanafy, H Hagberg, M Olausson, L Nilsson. Livebirth after uterus transplantation. Lancet 2015; 385(9968): 607–616
https://doi.org/10.1016/S0140-6736(14)61728-1 pmid: 25301505
55 M Brännström. Womb transplants with live births: an update and the future. Expert Opin Biol Ther 2017; 17(9): 1105–1112
https://doi.org/10.1080/14712598.2017.1347633 pmid: 28683576
56 O Ozkan, NU Dogan, O Ozkan, I Mendilcioglu, S Dogan, B Aydinuraz, M Simsek. Uterus transplantation: from animal models through the first heart beating pregnancy to the first human live birth. Womens Health (Lond) 2016; 12(4): 442–449
https://doi.org/10.1177/1745505716653849 pmid: 27638900
57 M Brännström. Uterus transplantation and beyond. J Mater Sci Mater Med 2017; 28(5): 70
https://doi.org/10.1007/s10856-017-5872-0 pmid: 28357688
58 N Ashary, A Tiwari, D Modi. Embryo implantation: war in times of love. Endocrinology 2018; 159(2): 1188–1198
https://doi.org/10.1210/en.2017-03082 pmid: 29319820
59 M Benner, G Ferwerda, I Joosten, RG van der Molen. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2018; 24(4): 393–415
https://doi.org/10.1093/humupd/dmy012 pmid: 29668899
60 Y Huh, YY Kim, SY Ku. Perspective of bioartificial uterus as gynecological regenerative medicine. Tissue Eng Regen Med 2012; 9(5): 233–239
https://doi.org/10.1007/s13770-012-0360-6
61 C Coughlan, W Ledger, Q Wang, F Liu, A Demirol, T Gurgan, R Cutting, K Ong, H Sallam, TC Li. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 14–38
https://doi.org/10.1016/j.rbmo.2013.08.011 pmid: 24269084
62 J Bosteels, J Kasius, S Weyers, FJ Broekmans, BWJ Mol, TM D’Hooghe. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Syst Rev 2015; (2): CD009461
https://doi.org/DOI:10.1002/14651858.CD009461.pub3 pmid: PMID:25701429
63 GAJ Dunselman, N Vermeulen, C Becker, C Calhaz-Jorge, T D’Hooghe, B De Bie, O Heikinheimo, AW Horne, L Kiesel, A Nap, A Prentice, E Saridogan, D Soriano, W Nelen; European Society of Human Reproduction and Embryology. ESHRE guideline: management of women with endometriosis. Hum Reprod 2014; 29(3): 400–412
https://doi.org/10.1093/humrep/det457 pmid: 24435778
64 EB Johnston-MacAnanny, J Hartnett, LL Engmann, JC Nulsen, MM Sanders, CA Benadiva. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 2010; 93(2): 437–441
https://doi.org/10.1016/j.fertnstert.2008.12.131 pmid: 19217098
65 K Kitaya, H Matsubayashi, K Yamaguchi, R Nishiyama, Y Takaya, T Ishikawa, T Yasuo, H Yamada. Chronic endometritis: potential cause of infertility and obstetric and neonatal complications. Am J Reprod Immunol 2016; 75(1): 13–22
https://doi.org/10.1111/aji.12438 pmid: 26478517
66 A Barash, N Dekel, S Fieldust, I Segal, E Schechtman, I Granot. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril 2003; 79(6): 1317–1322
https://doi.org/10.1016/S0015-0282(03)00345-5 pmid: 12798877
67 I Cervelló, X Santamaría, K Miyazaki, T Maruyama, C Simón. Cell therapy and tissue engineering from and toward the uterus. Semin Reprod Med 2015; 33(5): 366–372
https://doi.org/10.1055/s-0035-1559581 pmid: 26285168
68 S Zadehmodarres, S Salehpour, N Saharkhiz, L Nazari. Treatment of thin endometrium with autologous platelet-rich plasma: a pilot study. JBRA Assist Reprod 2017; 21(1): 54–56
https://doi.org/10.5935/1518-0557.20170013 pmid: PMID:28333034
69 S Gameiro, J Boivin, L Peronace, CM Verhaak. Why do patients discontinue fertility treatment? A systematic review of reasons and predictors of discontinuation in fertility treatment. Hum Reprod Update 2012; 18(6): 652–669
https://doi.org/10.1093/humupd/dms031 pmid: 22869759
70 M Garel, B Blondel, L Karpel, V Blanchet, G Breart, R Frydman, F Olivennes. Women’s views on Friendly IVF: a qualitative preliminary study. J Psychosom Obstet Gynaecol 2009; 30(2): 101–104
https://doi.org/10.1080/01674820802604896 pmid: 19533489
71 F Simonstein, M Mashiach-Eizenberg. The artificial womb: a pilot study considering people’s views on the artificial womb and ectogenesis in Israel. Camb Q Healthc Ethics 2009; 18(1): 87–94
https://doi.org/10.1017/S0963180108090130 pmid: 19091150
72 SY Brucker, K Rall, R Campo, P Oppelt, K Isaacson. Treatment of congenital malformations. Semin Reprod Med 2011; 29(2): 101–112
https://doi.org/10.1055/s-0031-1272472 pmid: 21437824
73 JM Beale, SM Creighton. Long-term health issues related to disorders or differences in sex development/intersex. Maturitas 2016; 94: 143–148
https://doi.org/10.1016/j.maturitas.2016.10.003 pmid: 27823735
74 PR Brinsden. Gestational surrogacy. Hum Reprod Update 2003; 9(5): 483–491
https://doi.org/10.1093/humupd/dmg033 pmid: 14640380
75 Y Long, D Yao, X Pan, T Ou. Clinical efficacy and safety of nerve-sparing radical hysterectomy for cervical cancer: a systematic review and meta-analysis. PLoS ONE 2014; 9(4): e94116
https://doi.org/10.1371/journal.pone.0094116 pmid: PMID:24748015
76 M Brännström, P Dahm Kähler, R Greite, J Mölne, C Díaz-García, SG Tullius. Uterus transplantation: a rapidly expanding field. Transplantation 2018; 102(4): 569–577
https://doi.org/10.1097/TP.0000000000002035 pmid: 29210893
77 S Puntambekar, M Telang, P Kulkarni, S Jadhav, R Sathe, N Warty, S Puntambekar, S Kade, M Panse, N Agarkhedkar, G Gandhi, M Manchekar, H Parekh, K Parikh, R Desai, M Mehta, M Chitale, S Nanda. Laparoscopic-assisted uterus retrieval from live organ donors for uterine transplant. J Minim Invasive Gynecol 2018; 25(4): 571–572
https://doi.org/10.1016/j.jmig.2017.11.001 pmid: 29133152
78 S Saso, A Clarke, T Bracewell-Milnes, A Saso, M Al-Memar, MY Thum, J Yazbek, G Del Priore, P Hardiman, S Ghaem-Maghami, JR Smith. Psychological issues associated with absolute uterine factor infertility and attitudes of patients toward uterine transplantation. Prog Transplant 2016; 26(1): 28–39
https://doi.org/10.1177/1526924816634840 pmid: 27136247
79 R Landau. Artificial womb versus natural birth: an exploratory study of women’s views. J Reprod Infant Psychol 2007; 25(1): 4–17
https://doi.org/10.1080/02646830601117118
80 C Kaczor. Could artificial wombs end the abortion debate? Natl Cathol Bioeth Q 2005; 5(2): 283–301
https://doi.org/10.5840/ncbq20055248 pmid: 16170885
81 K Devolder, J Harris. The ambiguity of the embryo: ethical inconsistency in the human embryonic stem cell debate. Metaphilosophy 2007; 38(2–3): 153–169
https://doi.org/10.1111/j.1467-9973.2007.00480.x
82 D Cutas, W Dondorp, T Swierstra, S Repping, G de Wert. Artificial gametes: perspectives of geneticists, ethicists and representatives of potential users. Med Health Care Philos 2014; 17(3): 339–345
https://doi.org/10.1007/s11019-013-9535-8 pmid: PMID:24357153
83 S Hendriks, EA Dancet, AM van Pelt, G Hamer, S Repping. Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 2015; 21(3): 285–296
https://doi.org/10.1093/humupd/dmv001 pmid: 25609401
84 H Mertes, G Pennings. Embryonic stem cell-derived gametes and genetic parenthood: a problematic relationship. Camb Q Healthc Ethics 2008; 17(1): 7–14
https://doi.org/10.1017/S096318010808002X pmid: 18462541
85 K Hayashi, S Ogushi, K Kurimoto, S Shimamoto, H Ohta, M Saitou. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338(6109): 971–975
https://doi.org/10.1126/science.1226889 pmid: 23042295
86 CA Easley, CR Simerly, G Schatten. Gamete derivation from embryonic stem cells, induced pluripotent stem cells or somatic cell nuclear transfer-derived embryonic stem cells: state of the art. Reprod Fertil Dev 2014; 27(1): 89–92
https://doi.org/10.1071/RD14317 pmid: 25472048
87 T Douglas, C Harding, H Bourne, J Savulescu. Stem cell research and same-sex reproduction. In: Stem Cells: New Frontiers in Science & Ethics. World Scientific, 2012: 207–228
88 A Smajdor, D Cutas. Will artificial gametes end infertility? Health Care Anal 2015; 23(2): 134–147
https://doi.org/10.1007/s10728-013-0268-x pmid: 24293033
89 PS Malchesky. Artificial organs 2015: a year in review. Artif Organs 2016; 40(3): 294–321
https://doi.org/10.1111/aor.12707 pmid: 26945924
90 PD Simmons. The artificial heart: how close are we, and do we want to get there? J Law Med Ethics 2001; 29(3-4): 401–406
https://doi.org/10.1111/j.1748-720X.2001.tb00358.x pmid: 12056377
91 J Harper, MC Magli, K Lundin, CLR Barratt, D Brison. When and how should new technology be introduced into the IVF laboratory? Hum Reprod 2012; 27(2): 303–313
https://doi.org/10.1093/humrep/der414 pmid: 22166806
92 JG Brink, J Hassoulas. The first human heart transplant and further advances in cardiac transplantation at Groote Schuur Hospital and the University of Cape Town. Cardiovasc J Afr 2009; 20(1): 31–35
pmid: 19287813
93 HJ Leese, H Whittall. Regulation of the transition from research to clinical practice in human assisted conception. Hum Fertil (Camb) 2001; 4(3): 172–176
https://doi.org/10.1080/1464727012000199262 pmid: 11591276
94 BP Jones, NJ Williams, S Saso, MY Thum, I Quiroga, J Yazbek, S Wilkinson, S Ghaem-Maghami, P Thomas, JR Smith. Uterine transplantation in transgender women. BJOG 2019; 126(2): 152–156
https://doi.org/10.1111/1471-0528.15438 pmid: PMID:30125449
[1] Bo Huang, Zhou Li, Xinling Ren, Jihui Ai, Lixia Zhu, Lei Jin. Free radical scavenging window of infertile patients with polycystic ovary syndrome: correlation with embryo quality[J]. Front. Med., 2017, 11(2): 247-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed